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Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.
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Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ
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What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.
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So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the

aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?
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Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.
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Protocol and Syntax



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)
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Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ckA, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

ckA
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Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ck′A, spkA
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ck′A, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)
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σ ← Sgn(sskA, (c , i ,A))

H2()

H1()

ckA ck′A

mki
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(c , i ,A),σ mki ← H1(ckA)
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Ver(spkA, (c , i ,A))
?
= 1

m ← Dec(mki , c)
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Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC.

9



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC.

9



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC.

9



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC.

9



Two-Party Channels

Two-party channels only refresh (i.e. achieve PCS) if users interact.

1

2

3

4

5

6

However, some two-party chats are often stale...
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Proving Security



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

• Clean execution: no trivial attacks.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• Add/Remove(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)
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Main theorem

Security of Sender Keys (informal)

Assume

• SymEnc is a IND-CPA symmetric encryption scheme.

• Sig is a SUF-CMA signature scheme.

• H is a PRG.

• 2PC is a 2PC-IND∆ two-party channels scheme for PCS bound ∆ > 0.

Then Sender Keys is M-INDC(∆) secure in our model w.r.t. a weak predicate C.

Conclusion: The core of the protocol has no fundamental flaws. But it still presents

some drawbacks.
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Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

• No authentication for control messages.

• Weak forward security for authentication.
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Sender Keys+

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

• No authentication for control messages.

• Weak forward security for authentication.

We propose and formalize Sender Keys+ as a practical, improved alternative!
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Sub-Optimal Forward Security

Let G = {ID1, ID2}. Then A queries:

• q1 = Send(ID1,m) generates C encrypted under mk and signed under ssk1.

• q2 = Expose(ID1), where A obtains ssk1, but not mk.

• A replaces the symmetric ciphertext in C and signs under ssk1 to create C ′.

• q3 = Receive(ID2, ID1,C
′), which is a successful injection.

q3 attempts to inject a message with keys from before exposure =⇒ should be allowed.

Can occur naturally e.g. if ID2 is offline when m is first sent.

Can be prevented with a MAC.
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Unsigned Control Messages

• In WhatsApp, control messages are not signed, so a network adversary can forge

them without exposing any party!

• Server can add/remove parties on behalf of other users:

• Burgle into the group attack [RMS18].

• Signal provides more protection but less than if signatures were used.

• Solution: sign control messages!
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Sender Keys in Practice

• Contrary to some folklore, Signal uses Sender Keys whenever possible!

• WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.

• Signal protects privacy more than WhatsApp (sealed sender, private groups...).

• Matrix uses Sender Keys but does not ratchet symmetric keys.
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Final Remarks



Takeaways

• Sender Keys is used by WhatsApp and

Signal.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

Thank you!

ia.cr/2023/1385

danielpatcollins@gmail.com

phillip.gajland@mpi-sp.org
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