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e Messaging protocols are used by
billions daily. Many apps claim
security + end-to-end encryption.

e Formal protocol analysis is crucial.

e MLS: Lots of theoretical analysis.
Secure, efficient, complex.

e Sender Keys: WhatsApp, Signal.
No formal analysis so far.
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Sender Keys

e Sender Keys is a simple, efficient
group messaging protocol used in
WhatsApp, Signal, Matrix...

C + Enc(ka, m)
o <« Sgn(sska, C)

e Parties use their own symmetric key C.o

)

kip to encrypt. No group key. A >

11111=0
)
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e Parties use two-party messaging to
share fresh key material.
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What is Secure Messaging?

e Correct, authentic, confidential, and asynchronous messaging.
e Secure membership.
e Forward Security (FS): past messages secret after compromise.

e Post-Compromise Security (PCS): future messages secret a key refresh.

FS ZO PCS
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So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the
aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?
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e Formalization of Sender Keys in a novel framework.

Security model capturing interaction between group messages and two-party
channels.

Proof of security with some restrictions. Identified shortcomings.

Improvements in Sender Keys-+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.
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A Group Messenger (GM) includes:

o C & Send(m, )
o (m,ID* e i) & Recv(C,7)

e T <& Exec(cmd, IDs,~), cmd € {crt,add, rem, upd}
b < Proc(T,~)
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Sender Keys: Send & Recv
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11111=0
100000
101001=0
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Two-Party Channels

e If C leaves (or someone updates):

TPC.Send((ck. spk))

ﬂ
e A, B process removal & erase keys. g & T Ten @’
e Fresh keys sent over secure 2PC. \ ﬁﬂ’”
e In reality, New keys sent encrypted...
under Double Ratchet keys! [MP16]

q
e A compromise also affects 2PC keys.
Modelling 2PC

We model two-party channels as a primitive 2PC.




Two-Party Channels

Two-party channels only refresh (i.e. achieve PCS) if users interact.

KRX

However, some two-party chats are often stale...

10
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o A wins if:

e breaks semantic security, or
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Security Model

Oracles:

We introduce a message indistinguishability security

game M-INDc.
e Adaptive A can forge and inject messages.

e Users can be exposed at any time (capturing
FS, PCS).
e A wins if:
e breaks semantic security, or

e forges a message
e in a clean/safe execution under C.

e Clean execution: no trivial attacks.

Create(/D, IDs)
Challenge(/D, mg, m)
Send(/D, m)
Receive(/D, C)
Add/Remove(/D, ID")
Update(/D)
Deliver(/D, T)
Expose(ID)
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e SymEnc is a IND-CPA symmetric encryption scheme.
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Then Sender Keys is M-IND¢(a) secure in our model w.r.t. a weak predicate C.



Main theorem

Security of Sender Keys (informal)

Assume

e SymEnc is a IND-CPA symmetric encryption scheme.

e Sig is a SUF-CMA signature scheme.

e His a PRG.

e 2PC is a 2PC-INDA two-party channels scheme for PCS bound A > 0.

Then Sender Keys is M-IND¢(a) secure in our model w.r.t. a weak predicate C.

Conclusion: The core of the protocol has no fundamental flaws. But it still presents
some drawbacks.
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Sender Keys+

Slow healing due to two-party channels, inefficient updates.

Total ordering of control messages required.

Ne authentication for control messages.

Weak forward security for authentication.

We propose and formalize Sender Keys+ as a practical, improved alternative!

14
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Sub-Optimal Forward Security

Let G = {ID1,ID3}. Then A queries:

e g1 = Send(/D1,m) generates C encrypted under mk and signed under sskj.
e ¢> = Expose(/D;1), where A obtains sskj, but not mk.

e A replaces the symmetric ciphertext in C and signs under sskj to create C’.
e g3 = Receive(/Dy, ID1, C'), which is a successful injection.

g3 attempts to inject a message with keys from before exposure = should be allowed.
Can occur naturally e.g. if /D5 is offline when m is first sent.

Can be prevented with a MAC.

15
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Unsigned Control Messages

In WhatsApp, control messages are not signed, so a network adversary can forge

them without exposing any party!

Server can add/remove parties on behalf of other users:
e Burgle into the group attack [RMS18].

Signal provides more protection but less than if signatures were used.

Solution: sign control messages!

16
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Sender Keys in Practice

e Contrary to some folklore, Signal uses Sender Keys whenever possible!
e WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.
e Signal protects privacy more than WhatsApp (sealed sender, private groups...).

e Matrix uses Sender Keys but does not ratchet symmetric keys.

[matrix]
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e Sender Keys is used by WhatsApp and
Signal.
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Takeaways
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e Sender Keys is used by WhatsApp and
Signal.

e Sender Keys is provably secure but in a

weak model.

e Sender Keys+: improved security and [

efficiency. E E

Thank you!

danielpatcollins@gmail.com

phillip.gajland@mpi-sp.org
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