WhatsUpp with Sender Keys?

Analysis, Improvements and Security Proofs

David Balbas'?, Daniel Collins®, Phillip Gajland*®
27th May 2024

LIMDEA Software Institute, Madrid, Spain

2Universidad Politécnica de Madrid, Spain

3EPFL, Lausanne, Switzerland

#Max Planck Institute for Security and Privacy, Bochum, Germany
5Ruhr University Bochum, Germany

Group Messaging

e Messaging protocols are used by
billions daily. Many apps claim
security + end-to-end encryption.

Group Messaging

e Messaging protocols are used by
billions daily. Many apps claim
security + end-to-end encryption.

e Formal protocol analysis is crucial.

Group Messaging

e Messaging protocols are used by
billions daily. Many apps claim
security + end-to-end encryption.

e Formal protocol analysis is crucial.

e MLS: Lots of theoretical analysis.
Secure, efficient, complex.

Group Messaging

e Messaging protocols are used by
billions daily. Many apps claim
security + end-to-end encryption.

e Formal protocol analysis is crucial.

e MLS: Lots of theoretical analysis.
Secure, efficient, complex.

e Sender Keys: WhatsApp, Signal.
No formal analysis so far.

Sender Keys

e Sender Keys is a simple, efficient

group messaging protocol used in
WhatsApp, Signal, Matrix...

[\
A 11I1=0
& s

Sender Keys

e Sender Keys is a simple, efficient

group messaging protocol used in
WhatsApp, Signal, Matrix...

e Parties use their own symmetric key [\
kip to encrypt. No group key. A o

11011=0

Sender Keys

e Sender Keys is a simple, efficient

group messaging protocol used in
WhatsApp, Signal, Matrix...

e Parties use their own symmetric key [\
kip to encrypt. No group key. A o
1"InI=90

ka, sska
ke, spks
ke, spkc

Sender Keys

e Sender Keys is a simple, efficient C < Enc(kn, m) “ B
group messaging protocol used in o « Sgn(sska, C)

WhatsApp, Signal, Matrix...

e Parties use their own symmetric key C.o f==\

kip to encrypt. No group key. A > brn—e

11011=0

ka, sska
ke, spks
ke, spkc

Sender Keys

e Sender Keys is a simple, efficient C < Enc(ka, m)
group messaging protocol used in o « Sgn(sska, C)
WhatsApp, Signal, Matrix...
e Parties use their own symmetric key C.o
kip to encrypt. No group key. A > brn—e
1"InI=90

ka, sska
ke, spks
ke, spkc

L\\C,O’

Sender Keys

e Sender Keys is a simple, efficient
group messaging protocol used in
WhatsApp, Signal, Matrix...

C + Enc(ka, m)
o <« Sgn(sska, C)

e Parties use their own symmetric key C.o

)

kip to encrypt. No group key. A >

11111=0
)

L\\C,O’

e Parties use two-party messaging to
share fresh key material.

ka, sska
ke, spks
ke, spkc

What is Secure Messaging?

e Correct, authentic, confidential, and asynchronous messaging.

What is Secure Messaging?

e Correct, authentic, confidential, and asynchronous messaging.

e Secure membership.

What is Secure Messaging?

e Correct, authentic, confidential, and asynchronous messaging.

e Secure membership.
e Forward Security (FS): past messages secret after compromise.

What is Secure Messaging?

e Correct, authentic, confidential, and asynchronous messaging.
e Secure membership.
e Forward Security (FS): past messages secret after compromise.

e Post-Compromise Security (PCS): future messages secret a key refresh.

FS ZO PCS

So, WhatsUpp with Sender Keys?

So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the
aforementioned requirements?

So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the
aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?

e Formalization of Sender Keys in a novel framework.

e Formalization of Sender Keys in a novel framework.

e Security model capturing interaction between group messages and two-party
channels.

e Formalization of Sender Keys in a novel framework.

e Security model capturing interaction between group messages and two-party

channels.

e Proof of security with some restrictions. ldentified shortcomings.

e Formalization of Sender Keys in a novel framework.

Security model capturing interaction between group messages and two-party
channels.

Proof of security with some restrictions. Identified shortcomings.

Improvements in Sender Keys-+: better efficiency and security.

e Formalization of Sender Keys in a novel framework.

Security model capturing interaction between group messages and two-party
channels.

Proof of security with some restrictions. Identified shortcomings.

Improvements in Sender Keys-+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

Protocol and Syntax

A Group Messenger (GM) includes:

A Group Messenger (GM) includes:

o C & Send(m,)

A Group Messenger (GM) includes:

o C & Send(m,)
o (m,ID* e i) & Recv(C,7)

A Group Messenger (GM) includes:

o C & Send(m,)
o (m,ID* e i) & Recv(C,7)

o T & Exec(cmd, IDs,), cmd € {crt,add, rem, upd}

A Group Messenger (GM) includes:

o C & Send(m,)
o (m,ID* e i) & Recv(C,7)

e T <& Exec(cmd, IDs,~), cmd € {crt,add, rem, upd}
b < Proc(T,~)

Sender Keys: Send & Recv

A

cka, spky

[\

ckg, spkg
cke, spke 190000 cke, spk¢
cky, sska ::::::: ckg, sskg

cka, spky
ckg, spkg
cke, sske

Sender Keys: Send & Recv

cka, spky

[\

ckg, spkg
cke, spke 190000 cke, spk¢
ck’y, sska ::::::: ckg, sskg

cka Ha(), Ck'A

Hi()

mk; Hl(CkA)
Ckf4 — HQ(CkA)

cka, spky
ckg, spkg
cke, sske

n@)

Sender Keys: Send & Recv

ckg, spkg [\ cka, spky
cke, spke 190000 cke, spk¢
ck’y, sska ::::::: ckg, sskg

Ha(),

cka ck’

Hi()
mk,- — Hl(CkA) q
ck/y < Ha(ckn) cka, spky
¢ <« Enc(mk;, m) Q Ct& SP:B
o < Sgn(sska, (c,i,A)) CKc, SSKc

Sender Keys: Send & Recv

@
cka, spky

cke, spke
ckg, sskg

ckg, spkg

cke, spke

ck’y, sska

W
,:
cka Ha(), Ck'A

(c,i,A),o
Hi()
mk; Hl(CkA) q
Ckf4 — HQ(CkA)

¢ <« Enc(mk;, m) Q

o < Sgn(sska, (c,i,A))

cka, spky
ckg, spkg
cke, sske

Sender Keys: Send & Recv

[\

11111=0
100000
101001=0

ck’y, spk,
cke, spke
ckg, sskg

ckg, spkg

cke, spke

ck’y, sska

cka Ha(), Ck'A

(c,i,A),o mk; < Hi(cka)
hO— cky « Ha(cka)
Ver(spk,, (c, i, A)) 21
m <« Dec(mk;, c)

mk; Hl(CkA)
Ckf4 — HQ(CkA)

=
¢ < Enc(mk;, m) Q

o < Sgn(sska, (c,i,A))
C

cky, spky
ckg, spkg
cke, sske

Two-Party Channels

e If C leaves (or someone updates):

TPC.Send((ck . spk}))
B N

Two-Party Channels

e If C leaves (or someone updates):

TPC.Send((ck . spk}))
B N

e A, B process removal & erase keys.

A
o Fresh keys sent over secure 2PC.

Two-Party Channels

e If C leaves (or someone updates): T

e A, B process removal & erase keys.

e Fresh keys sent over secure 2PC. \ = J/ﬁﬂ’”'

e In reality, New keys sent encrypted...
under Double Ratchet keys! [MP16]

e A compromise also affects 2PC keys.

Two-Party Channels

e If C leaves (or someone updates):

TPC.Send((ck. spk))

ﬂ
e A, B process removal & erase keys. g & T Ten @’
e Fresh keys sent over secure 2PC. \ ﬁﬂ’”
e In reality, New keys sent encrypted...
under Double Ratchet keys! [MP16]

q
e A compromise also affects 2PC keys.
Modelling 2PC

We model two-party channels as a primitive 2PC.

Two-Party Channels

Two-party channels only refresh (i.e. achieve PCS) if users interact.

KRX

However, some two-party chats are often stale...

10

Proving Security

Security Model

We introduce a message indistinguishability security
game M-INDc.

11

Security Model

We introduce a message indistinguishability security
game M-INDc.

e Adaptive A can forge and inject messages.

11

Security Model

We introduce a message indistinguishability security
game M-INDc.

e Adaptive A can forge and inject messages.

e Users can be exposed at any time (capturing
FS, PCS).

11

Security Model

We introduce a message indistinguishability security
game M-INDc.

e Adaptive A can forge and inject messages.

e Users can be exposed at any time (capturing
FS, PCS).

o A wins if:

11

Security Model

We introduce a message indistinguishability security
game M-INDc.

e Adaptive A can forge and inject messages.

e Users can be exposed at any time (capturing
FS, PCS).
e A wins if:
e breaks semantic security, or

e forges a message
e in a clean/safe execution under C.

11

Security Model

We introduce a message indistinguishability security
game M-INDc.
e Adaptive A can forge and inject messages.

e Users can be exposed at any time (capturing
FS, PCS).

o A wins if:

e breaks semantic security, or
e forges a message

e in a clean/safe execution under C.

e Clean execution: no trivial attacks.

11

Security Model

Oracles:

We introduce a message indistinguishability security

game M-INDc.
e Adaptive A can forge and inject messages.

e Users can be exposed at any time (capturing
FS, PCS).
e A wins if:
e breaks semantic security, or

e forges a message
e in a clean/safe execution under C.

e Clean execution: no trivial attacks.

Create(/D, IDs)
Challenge(/D, mg, m)
Send(/D, m)
Receive(/D, C)
Add/Remove(/D, ID")
Update(/D)
Deliver(/D, T)
Expose(ID)

11

Main theorem

Security of Sender Keys (informal)

Assume

e SymEnc is a IND-CPA symmetric encryption scheme.

e Sig is a SUF-CMA signature scheme.

e His a PRG.

e 2PC is a 2PC-INDA two-party channels scheme for PCS bound A > 0.

Then Sender Keys is M-IND¢(a) secure in our model w.r.t. a weak predicate C.

Main theorem

Security of Sender Keys (informal)

Assume

e SymEnc is a IND-CPA symmetric encryption scheme.

e Sig is a SUF-CMA signature scheme.

e His a PRG.

e 2PC is a 2PC-INDA two-party channels scheme for PCS bound A > 0.

Then Sender Keys is M-IND¢(a) secure in our model w.r.t. a weak predicate C.

Conclusion: The core of the protocol has no fundamental flaws. But it still presents
some drawbacks.

e Slow healing due to two-party channels, inefficient updates.

13

e Slow healing due to two-party channels, inefficient updates.

e Total ordering of control messages required.

13

e Slow healing due to two-party channels, inefficient updates.
e Total ordering of control messages required.

e No authentication for control messages.

13

Slow healing due to two-party channels, inefficient updates.

Total ordering of control messages required.
e No authentication for control messages.

Weak forward security for authentication.

13

Sender Keys+

Slow healing due to two-party channels, inefficient updates.

Total ordering of control messages required.

Ne authentication for control messages.

Weak forward security for authentication.

We propose and formalize Sender Keys+ as a practical, improved alternative!

14

Sub-Optimal Forward Security

Let G = {ID1,ID3}. Then A queries:

15

Sub-Optimal Forward Security

Let G = {ID1,ID3}. Then A queries:

e g1 = Send(/D1,m) generates C encrypted under mk and signed under sskj.

15

Sub-Optimal Forward Security

Let G = {ID1,ID3}. Then A queries:

e g1 = Send(/D1,m) generates C encrypted under mk and signed under sskj.

e ¢> = Expose(/D;1), where A obtains sskj, but not mk.

15

Sub-Optimal Forward Security

Let G = {ID1,ID3}. Then A queries:

e g1 = Send(/D1,m) generates C encrypted under mk and signed under sskj.
e ¢> = Expose(/D;1), where A obtains sskj, but not mk.

e A replaces the symmetric ciphertext in C and signs under sskj to create C’.

15

Sub-Optimal Forward Security

Let G = {ID1,ID3}. Then A queries:

e g1 = Send(/D1,m) generates C encrypted under mk and signed under sskj.
e ¢> = Expose(/D;1), where A obtains sskj, but not mk.
e A replaces the symmetric ciphertext in C and signs under sskj to create C’.

e g3 = Receive(/Dy, ID1, C'), which is a successful injection.

15

Sub-Optimal Forward Security

Let G = {ID1,ID3}. Then A queries:

e g1 = Send(/D1,m) generates C encrypted under mk and signed under sskj.
e ¢> = Expose(/D;1), where A obtains sskj, but not mk.
e A replaces the symmetric ciphertext in C and signs under sskj to create C’.

e g3 = Receive(/Dy, ID1, C'), which is a successful injection.

g3 attempts to inject a message with keys from before exposure = should be allowed.
Can occur naturally e.g. if /D5 is offline when m is first sent.

15

Sub-Optimal Forward Security

Let G = {ID1,ID3}. Then A queries:

e g1 = Send(/D1,m) generates C encrypted under mk and signed under sskj.
e ¢> = Expose(/D;1), where A obtains sskj, but not mk.

e A replaces the symmetric ciphertext in C and signs under sskj to create C’.
e g3 = Receive(/Dy, ID1, C'), which is a successful injection.

g3 attempts to inject a message with keys from before exposure = should be allowed.
Can occur naturally e.g. if /D5 is offline when m is first sent.

Can be prevented with a MAC.

15

Unsigned Control Messages

e In WhatsApp, control messages are not signed, so a network adversary can forge
them without exposing any party!

16

Unsigned Control Messages

e In WhatsApp, control messages are not signed, so a network adversary can forge
them without exposing any party!
e Server can add/remove parties on behalf of other users:
e Burgle into the group attack [RMS18].

16

Unsigned Control Messages

e In WhatsApp, control messages are not signed, so a network adversary can forge
them without exposing any party!
e Server can add/remove parties on behalf of other users:

e Burgle into the group attack [RMS18].

e Signal provides more protection but less than if signatures were used.

16

Unsigned Control Messages

In WhatsApp, control messages are not signed, so a network adversary can forge

them without exposing any party!

Server can add/remove parties on behalf of other users:
e Burgle into the group attack [RMS18].

Signal provides more protection but less than if signatures were used.

Solution: sign control messages!

16

Sender Keys in Practice

e Contrary to some folklore, Signal uses Sender Keys whenever possible!

[matrix]

17

Sender Keys in Practice

e Contrary to some folklore, Signal uses Sender Keys whenever possible!

e WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.

[matrix]

17

Sender Keys in Practice

e Contrary to some folklore, Signal uses Sender Keys whenever possible!
e WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.

e Signal protects privacy more than WhatsApp (sealed sender, private groups...).

[matrix]

17

Sender Keys in Practice

e Contrary to some folklore, Signal uses Sender Keys whenever possible!
e WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.
e Signal protects privacy more than WhatsApp (sealed sender, private groups...).

e Matrix uses Sender Keys but does not ratchet symmetric keys.

[matrix]

17

Final Remarks

e Sender Keys is used by WhatsApp and
Signal.

18

ia.cr/2023/1385
danielpatcollins@gmail.com
phillip.gajland@mpi-sp.org

e Sender Keys is used by WhatsApp and
Signal.

e Sender Keys is provably secure but in a
weak model.

18

ia.cr/2023/1385
danielpatcollins@gmail.com
phillip.gajland@mpi-sp.org

e Sender Keys is used by WhatsApp and
Signal.

e Sender Keys is provably secure but in a

weak model.

e Sender Keys+: improved security and
efficiency.

18

ia.cr/2023/1385
danielpatcollins@gmail.com
phillip.gajland@mpi-sp.org

Takeaways

ia.cr/2023/1385

e Sender Keys is used by WhatsApp and
Signal.

e Sender Keys is provably secure but in a

weak model.

e Sender Keys+: improved security and [

efficiency. E E

Thank you!

danielpatcollins@gmail.com

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
danielpatcollins@gmail.com
phillip.gajland@mpi-sp.org

	Protocol and Syntax
	Proving Security
	Final Remarks

