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Our Goals  
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Our Goals
Uniform Threat Modeling For 
Storage Encryption

Unique API for Storage 
Encryption at Google

All data is protected with well 
understood security properties and 
hardened, unified implementations.

Provide a single point of adoption for 
storage wide initiatives such as silent 
data corruption, hardware offloads, 
performance optimizations.
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Threat Model Guidelines  

● Key Compartmentalization

○ Which key? Who has access to keys? etc.

● Minimize trust assumption in the infrastructure

○ Maintain security in the case of lateral compromise
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Security Properties 
Define an individual data unit (File, Object, Disk, Database*). Properties over the unit:

● Confidentiality

● Authenticity

● Resistance vs Segment Reordering Attacks

● Resistance vs Segments Swap or Append Across Units
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Cryptographic 
Constructions and 
Primitives  
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Primitives
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Online AEAD

Hoang, Viet Tung, et al. "Online authenticated-encryption and its nonce-reuse misuse-resistance." Advances in 
Cryptology--CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I 
35. Springer Berlin Heidelberg, 2015.

Tink StreamingAEAD mainly follows this approach with some differences.

https://developers.google.com/tink/streaming-aead
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Real World Storage 
Systems
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Append-only file system
Requirements:

● Efficient substring reads/random reads to any particular offset (Fixed segment size)

● Incremental appends to end of file (Flush)

● Reopen a file to keep appending

● Truncate a file

● Rollback a file to a previous version, then continue appending
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Append-only file system

Write Encrypt Persist
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Incremental Appends

IVi
CTi,0

MACi,0

Segment Size S 

 CTi,0  of size T < SWrite T bytes
T < S

- IVi  || CTi,0 are persisted and replicated

- MACi,0 is stored temporarily separately

Encrypt Persist
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Incremental Appends 

CTi,1

MACi,1

Segment Size S 

CTi,0 + CTi,1  size T+R < S
Write R bytes

R < S

- Segment ciphertext is now: IVi || CTi,0 || CTi,1   

- MACi,1  replaces MACi,0 

IVi
CTi,0

IVi
CTi,0

IVi
CTi,0

PersistEncrypt
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Incremental Appends

CTi,2

MACi,2

Segment Size S 

CTi,0 + CTi,1+ CTi,2  size V + T+ R >= S
Write V bytes

V < S

Segment ciphertext is now: IVi || CTi,0 || CTi,1  || CTi,2 || MACi,2     

Encrypt

IVi
CTi,0 CTi,1

IVi
CTi,0 CTi,1

IVi
CTi,0 CTi,1

Persist
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Incremental Appends

Segment ciphertext is now: IVi || CTi,0 || CTi,1  || CTi,2 || MACi,2     
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Why not STREAM?

● Ability to append to existing ciphertext (no finalize bit)

○ Files use frequently snapshotting

● Re-encryption is expensive (read only FS)

○ After writing, file can be replicated.
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Incremental STREAM?

We need a mode that combines Incremental AEAD with Online AEAD. 

Subtle points:

● No end of stream: Append == Truncate

● Same Key, IV for more than one MAC

● Can’t use nonce-misuse resistant schemes (double pass)

Sasaki, Y., Yasuda, K. (2016). A New Mode of Operation for Incremental Authenticated Encryption with Associated Data. In: 
Dunkelman, O., Keliher, L. (eds) Selected Areas in Cryptography – SAC 2015. SAC 2015. Lecture Notes in Computer Science(), vol 
9566. Springer, Cham.
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AEAD Algorithms Limitations
● Using deterministic IVs in a stateful distributed systems is a bad idea

● Number of invocation on safe invocation on an AEAD

○ AES-GCM: 2^32 isn’t much for cloud scale

● Constant re-keying is expensive + multi user setting attacks

● Performance is critical 
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Additional Real World 
Constraints 
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Silent Data Corruption
● Issue that impacts various levels (memory, storage, network, CPU)

○ HEAP stomping, SW bugs

● SDC occurs when an impacted CPU causes errors/miscalculations

● May be caused by “mercurial cores”1

● Defects in processors 

● Faults can be deterministic

● Don’t always manifest 

1Hochschild, Peter H., et al. "Cores that don't count." Proceedings of the Workshop on Hot Topics in Operating Systems. 2021.
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Silent Data Corruption
● SDC poses unique challenges for cryptography

● Ciphertexts indistinguishable from random (hard to validate 
correctness)

● Random IV means encrypting twice gets two different results

● Corrupted encryption = data loss (crypto shredding)

● Cryptographic integrity expensive (and may require RPC)
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Silent Data Corruption
● Faults can happen during encryption, or to the encryption context!

● General heuristic: Encrypt, checksum, then verify (decrypt right away)

○ E.g., CRC32C

○ Decryption is not free

○ May not protect against deterministic hardware faults

■ One may pin to a different core (expensive!)

■ Alternative circuit? Self-verifying construction?
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Silent Data Corruption

Encryption

Decryption
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Compliance
● Security != Compliance

● Limited set of tools at our disposal - often can’t use new, shiny things!

● Systems grow, get connected to other systems.

● It’s easier to build with compliance in mind from inception. 
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Conclusion

● Standard cryptographic primitives and constructions don’t fully match 
the real world.

● At scale, fault tolerance against faults is extremely important.

● Compliance can limit the algorithms available to us, as well as the way 
in which we can use such algorithms.
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Q&A


