
1

How to Encrypt a
Cloud
Cryptographic Applications Workshop, May 2024
Fernando Lobato Meeser (felobato@google.com)
Moreno Ambrosin (ambrosin@google.com)
Qiushi Wang (qiushi@google.com)

22

Outline

1. Storage System Threat Model

2. Our Goals

3. Cryptographic Constructions and Primitives

4. Real World Storage Systems

5. Additional Real World Constraints

6. Conclusion

3

Storage System
Threat Model

44

Encryption at Rest

55

Encryption at Rest

66

Storage Systems

Database BlockObjectFile

77

Storage Services

Database BlockObjectFile

Encryption at Rest Scale

Storage Services

Database BlockObjectFile

Storage Services

Database BlockObjectFile

Cluster Cluster Cluster
Data Center

Cluster Cluster Cluster
Data Center

Cluster Cluster Cluster
Data Center

88

Storage Services

Database BlockObjectFile

Encryption at Rest Scale

Cluster Cluster Cluster
Data Center

Cluster Cluster Cluster
Data Center

Cluster Cluster Cluster
Data Center

Storage Services

Database BlockObjectFile

Storage Services

Database BlockObjectFile

9

Our Goals

1010

Our Goals
Uniform Threat Modeling For
Storage Encryption

Unique API for Storage
Encryption at Google

All data is protected with well
understood security properties and
hardened, unified implementations.

Provide a single point of adoption for
storage wide initiatives such as silent
data corruption, hardware offloads,
performance optimizations.

1111

Threat Model Guidelines

● Key Compartmentalization

○ Which key? Who has access to keys? etc.

● Minimize trust assumption in the infrastructure

○ Maintain security in the case of lateral compromise

1212

Security Properties
Define an individual data unit (File, Object, Disk, Database*). Properties over the unit:

● Confidentiality

● Authenticity

● Resistance vs Segment Reordering Attacks

● Resistance vs Segments Swap or Append Across Units

13

Cryptographic
Constructions and
Primitives

1414

Primitives

Online AEAD AEAD

Database BlockObjectFile

1515

AEAD
M

E

C T

MAC

N K1 K2

AD

1616

Online AEAD

Hoang, Viet Tung, et al. "Online authenticated-encryption and its nonce-reuse misuse-resistance." Advances in
Cryptology--CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I
35. Springer Berlin Heidelberg, 2015.

Tink StreamingAEAD mainly follows this approach with some differences.

https://developers.google.com/tink/streaming-aead

17

Real World Storage
Systems

1818

Append-only file system
Requirements:

● Efficient substring reads/random reads to any particular offset (Fixed segment size)

● Incremental appends to end of file (Flush)

● Reopen a file to keep appending

● Truncate a file

● Rollback a file to a previous version, then continue appending

1919

Append-only file system

Write Encrypt Persist

2020

Incremental Appends

IVi
CTi,0

MACi,0

Segment Size S

 CTi,0 of size T < SWrite T bytes
T < S

- IVi || CTi,0 are persisted and replicated

- MACi,0 is stored temporarily separately

Encrypt Persist

2121

Incremental Appends

CTi,1

MACi,1

Segment Size S

CTi,0 + CTi,1 size T+R < S
Write R bytes

R < S

- Segment ciphertext is now: IVi || CTi,0 || CTi,1

- MACi,1 replaces MACi,0

IVi
CTi,0

IVi
CTi,0

IVi
CTi,0

PersistEncrypt

2222

Incremental Appends

CTi,2

MACi,2

Segment Size S

CTi,0 + CTi,1+ CTi,2 size V + T+ R >= S
Write V bytes

V < S

Segment ciphertext is now: IVi || CTi,0 || CTi,1 || CTi,2 || MACi,2

Encrypt

IVi
CTi,0 CTi,1

IVi
CTi,0 CTi,1

IVi
CTi,0 CTi,1

Persist

2323

Incremental Appends

Segment ciphertext is now: IVi || CTi,0 || CTi,1 || CTi,2 || MACi,2

IVi
CTi,0

CTi,1

CTi,2

MACi,2

IVi
CTi,0

CTi,1

CTi,2

MACi,2

IVi
CTi,0

CTi,1

CTi,2

MACi,2

2424

Why not STREAM?

● Ability to append to existing ciphertext (no finalize bit)

○ Files use frequently snapshotting

● Re-encryption is expensive (read only FS)

○ After writing, file can be replicated.

2525

Incremental STREAM?

We need a mode that combines Incremental AEAD with Online AEAD.

Subtle points:

● No end of stream: Append == Truncate

● Same Key, IV for more than one MAC

● Can’t use nonce-misuse resistant schemes (double pass)

Sasaki, Y., Yasuda, K. (2016). A New Mode of Operation for Incremental Authenticated Encryption with Associated Data. In:
Dunkelman, O., Keliher, L. (eds) Selected Areas in Cryptography – SAC 2015. SAC 2015. Lecture Notes in Computer Science(), vol
9566. Springer, Cham.

2626

AEAD Algorithms Limitations
● Using deterministic IVs in a stateful distributed systems is a bad idea

● Number of invocation on safe invocation on an AEAD

○ AES-GCM: 2^32 isn’t much for cloud scale

● Constant re-keying is expensive + multi user setting attacks

● Performance is critical

27

Additional Real World
Constraints

2828

Silent Data Corruption
● Issue that impacts various levels (memory, storage, network, CPU)

○ HEAP stomping, SW bugs

● SDC occurs when an impacted CPU causes errors/miscalculations

● May be caused by “mercurial cores”1

● Defects in processors

● Faults can be deterministic

● Don’t always manifest

1Hochschild, Peter H., et al. "Cores that don't count." Proceedings of the Workshop on Hot Topics in Operating Systems. 2021.

2929

Silent Data Corruption
● SDC poses unique challenges for cryptography

● Ciphertexts indistinguishable from random (hard to validate
correctness)

● Random IV means encrypting twice gets two different results

● Corrupted encryption = data loss (crypto shredding)

● Cryptographic integrity expensive (and may require RPC)

3030

Silent Data Corruption
● Faults can happen during encryption, or to the encryption context!

● General heuristic: Encrypt, checksum, then verify (decrypt right away)

○ E.g., CRC32C

○ Decryption is not free

○ May not protect against deterministic hardware faults

■ One may pin to a different core (expensive!)

■ Alternative circuit? Self-verifying construction?

3131

Silent Data Corruption

Encryption

Decryption

3232

Compliance
● Security != Compliance

● Limited set of tools at our disposal - often can’t use new, shiny things!

● Systems grow, get connected to other systems.

● It’s easier to build with compliance in mind from inception.

3333

Conclusion

● Standard cryptographic primitives and constructions don’t fully match
the real world.

● At scale, fault tolerance against faults is extremely important.

● Compliance can limit the algorithms available to us, as well as the way
in which we can use such algorithms.

3434

Q&A

