
Computing on your data with MPC

Christopher Patton
CAW 2024

The tech industry needs data to operate

Use case Data used (by whom)

Browser telemetry Which websites trigger bugs, distribute
malware, etc. (browser vendor)

Web analytics Which features of a website do users
(dis)like the most (web developer)

Connectivity Connectivity issues between client and
server (network operator)

Ad tech Which ad campaigns are driving revenue
(advertiser)

Machine learning Who "are" my users

2

The tech industry collects more data than it uses

Use case Data used (by whom) Data collected

Browser telemetry Which websites trigger bugs, distribute
malware, etc. (browser vendor)

Websites visited by users

Web analytics Which features of a website do users
(dis)like the most (web developer)

What users are doing on your website

Connectivity Connectivity issues between client and
server (network operator)

Which servers are clients connecting to

Ad tech Which ad campaigns are driving revenue
(advertiser)

Cross-site activity (saw an ad on one
site and made a purchase on another)

Machine learning Who "are" my users attributes and labels

3

Data minimization

measurements

aggregate

Collect what you use and nothing more.

"Which users visited example.com
on Thursday"

"How many users visited
example.com on Thursday"

4

The PPM working group at IETF

● IETF: "Internet Engineering Task Force"

● Specifies many of the protocols that undergird the
Internet (DNS, TLS, HTTP, …)

● PPM: "Privacy Preserving Measurement" working group

● Lower the cost of data minimization

● turn fancy crypto (MPC) into boring crypto
● compute, bandwidth, dollars spent

● Drive innovation by providing a deployment path for
new research

5

Academia
Industry

The PPM working group at IETF

● 2017: Corrigan-Gibbs and Boneh propose Prio

● 2018: Mozilla experiments with Prio for origin telemetry

● 2020: Google, Apple, and ISRG deploy Prio for COVID-19 exposure notification apps

● 2021: Working group formed

● 2022: Working group adopts its first draft

● 2023: First deployments of DAP/Prio3 (candidate standard for Prio)

● Goal for 2024: Finish the base drafts

datatracker.ietf.org/doc/draft-ietf-ppm-dap

6

https://crypto.stanford.edu/prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://blog.mozilla.org/en/products/firefox/partnership-ohttp-prio/
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/

● VDAF: building a box around MPC

● Building VDAFs

● Beyond VDAFs

● MPC hot takes 🌶

7

Computing on secret shared data

VDAF: building a box around MPC

8

measurement

𝑚1

𝑚2

…

𝑚𝑖

…

𝑚𝑁

𝑓(𝑚1, …, 𝑚𝑁) = 𝑚1 + … + 𝑚𝑁

Computing on secret shared data

9

measurement first share second share

𝑚1 [𝑚1]1 = 𝑚1 - 𝑟1 [𝑚1]2 = 𝑟1

𝑚2 [𝑚2]1 = 𝑚2 - 𝑟1 [𝑚2]2 = 𝑟2

… … …

𝑚𝑖 [𝑚𝑖]1 = 𝑚𝑖 - 𝑟𝑖 [𝑚𝑖]2 = 𝑟𝑖

… … …

𝑚𝑁 [𝑚𝑁]1 = 𝑚𝑁 - 𝑟𝑁 [𝑚𝑁]2 = 𝑟𝑁

Each client shards its
measurement into input
shares

Each 𝑟𝑖 sampled randomly
from [0..𝑞)

VDAF: building a box around MPC

Computing on secret shared data

10

measurement first share second share

𝑚1 [𝑚1]1 = 𝑚1 - 𝑟1 [𝑚1]2 = 𝑟1

𝑚2 [𝑚2]1 = 𝑚2 - 𝑟1 [𝑚2]2 = 𝑟2

… … …

𝑚𝑖 [𝑚𝑖]1 = 𝑚𝑖 - 𝑟𝑖 [𝑚𝑖]2 = 𝑟𝑖

… … …

𝑚𝑁 [𝑚𝑁]1 = 𝑚𝑁 - 𝑟𝑁 [𝑚𝑁]2 = 𝑟𝑁

[𝑎]1= [𝑚1]1 +…+ [𝑚𝑁]1

First aggregator sums up
its input shares to get its
aggregate share

VDAF: building a box around MPC

Computing on secret shared data

11

measurement first share second share

𝑚1 [𝑚1]1 = 𝑚1 - 𝑟1 [𝑚1]2 = 𝑟1

𝑚2 [𝑚2]1 = 𝑚2 - 𝑟1 [𝑚2]2 = 𝑟2

… … …

𝑚𝑖 [𝑚𝑖]1 = 𝑚𝑖 - 𝑟𝑖 [𝑚𝑖]2 = 𝑟𝑖

… … …

𝑚𝑁 [𝑚𝑁]1 = 𝑚𝑁 - 𝑟𝑁 [𝑚𝑁]2 = 𝑟𝑁

[𝑎]1= [𝑚1]1 +…+ [𝑚𝑁]1 [𝑎]2= [𝑚1]2 +…+ [𝑚𝑁]2

Second aggregator sums
up its input shares to get
its aggregate share

VDAF: building a box around MPC

Computing on secret shared data

12

measurement first share second share

𝑚1 [𝑚1]1 = 𝑚1 - 𝑟1 [𝑚1]2 = 𝑟1

𝑚2 [𝑚2]1 = 𝑚2 - 𝑟1 [𝑚2]2 = 𝑟2

… … …

𝑚𝑖 [𝑚𝑖]1 = 𝑚𝑖 - 𝑟𝑖 [𝑚𝑖]2 = 𝑟𝑖

… … …

𝑚𝑁 [𝑚𝑁]1 = 𝑚𝑁 - 𝑟𝑁 [𝑚𝑁]2 = 𝑟𝑁

[𝑎]1= [𝑚1]1 +…+ [𝑚𝑁]1 [𝑎]2= [𝑚1]2 +…+ [𝑚𝑁]2

The collector sums up
aggregate shares to get
aggregate result

[𝑎]1 + [𝑎]2 = 𝑚1 + … + 𝑚𝑁

VDAF: building a box around MPC

Computing on secret shared data

13

type measurements aggregate result

Count 1, 1, 0, 1, 0, 1 5

Mean, standard
deviation

182, 160, 190,
170, 175

175, 11

Histogram -7 ⇒ [1, 0, 0]
23 ⇒ [0, 1, 0]
45 ⇒ [0, 1, 0]
59 ⇒ [0, 0, 1]

Linear regression (1, 7), (2, 10),
(3, 9), (4, 11),
…, (5, 10)

● Prio: represent aggregation function
as a linear function of (some
encoding of) the measurements

● Not sufficient: need interaction!

VDAF: building a box around MPC

Need for interactivity: input validation

Secret sharing of 1:

● 7721925095626756828

● 10724818973787827494

Secret sharing of 10865039765974559458:

● 6499945567220489507

● 4365094198754069951

14

type measurements aggregate result

Count 1, 1, 0, 1, 0, 999 1002

Mean, standard
deviation

182, 160, 190,
170, 999

340, 368

Histogram -7 ⇒ [1, 0, 0]
23 ⇒ [0, 1, 0]
45 ⇒ [0, 1, 0]
[999, 999, 999]

Linear regression (1, 7), (2, 10),
(3, 9), (4, 11),
…, (999, -999)

VDAF: building a box around MPC

Need for interactivity: non-linear computation

● E.g., heavy hitters: Among the measurements uploaded by clients, find the
subset that were uploaded at least 𝑡 times (for some threshold 𝑡)

15

VDAF: building a box around MPC

websites visited

tiktok.com

facebook.com

tiktok.com

facebook.com

myspace.com

tiktok.com

facebook.com

twitter.com

popular websites (𝑡=3)

tiktok.com

facebook.com

Data plane

● Each client shards its measurement into input
shares and sends one share to each
aggregator

16

input shares

Client Client Client

Aggregator Aggregator

m[1] m[2] m[3]measurements

VDAF: building a box around MPC

Data plane

● Each client shards its measurement into input
shares and sends one share to each
aggregator

● Aggregators compute aggregate shares, then
send their share to the collector

17

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]measurements

VDAF: building a box around MPC

Data plane

● Each client shards its measurement into input
shares and sends one share to each
aggregator

● Aggregators compute aggregate shares, then
send their share to the collector

● Collector unshards the aggregate result

18

aggregate result

aggregate shares

input shares

masurements

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]measurements

VDAF: building a box around MPC

Control plane

● Aggregators interact during aggregation
(input validation)

19

aggregate result

aggregate shares

input shares

masurements

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]measurements

VDAF: building a box around MPC

Control plane

● Aggregators interact during aggregation
(input validation)

● Collector might push information to
aggregators (heavy hitters with Poplar)

20

aggregate result

aggregate shares

input shares

masurements

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]measurements

VDAF: building a box around MPC

https://eprint.iacr.org/2021/017

Control plane

● Aggregators interact during aggregation
(input validation)

● Collector might push information to
aggregators (heavy hitters with Poplar)

● Collector might push information to clients
(federated learning with PINE)

21

aggregate result

aggregate shares

input shares

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

VDAF: building a box around MPC

https://eprint.iacr.org/2021/017
https://arxiv.org/abs/2311.10237

Verifiable Distributed Aggregation
Function (VDAF)

● Used to compute functions of the form

 𝑓(𝜎, 𝑚1, …, 𝑚𝑁) = 𝑔(𝜎, 𝑚1) + … + 𝑔(𝜎, 𝑚𝑁)

 𝑚1, …, 𝑚𝑁 ∈ Measurements (chosen by clients)

 𝜎 ∈ Aggregation Parameters (chosen by
collector)

22

aggregate result

aggregate shares

input shares

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

VDAF: building a box around MPC

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

Privacy

● Threat model: one aggregator is honest

● Security goal: data minimization

● Attacker's view of the protocol execution
is efficiently simulatable given the
aggregate result*

23

aggregate result

aggregate shares

input shares

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

*There may be additional leakage, depending on the VDAF.

VDAF: building a box around MPC

Robustness

● Threat model: aggregators are honest

● Security goal: collector correctly aggregates
honest clients' measurements

● Aggregate result is efficiently extractable
from the attacker's execution (i.e., its
random oracle queries)

24

aggregate result

aggregate shares

input shares

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

VDAF: building a box around MPC

Malicious versus semi-honest security

● We must have privacy against malicious
aggregators

● We don't always need robustness against
malicious aggregators

● Malicious robustness is nice to have,
but not any cost (more parties, more
rounds, more bandwidth, etc.)

25

VDAF: building a box around MPC

● VDAF: building a box around MPC

● Building VDAFs

● Beyond VDAFs

● MPC hot takes 🌶

26

Fully linear proofs [BBCG+19]

Building VDAFs

27

Syntax:

𝛱 := Prove(𝑋) // proof generation
𝑉 := Query(𝑋, 𝛱; 𝑞𝑟) // query generation
𝑑 := Decide(𝑉) // decision

Full linearity: Query(𝑋, 𝛱; 𝑞𝑟) is equivalent to:

● Split 𝑋, 𝛱 into shares [𝑋]𝑖 , [𝛱]𝑖 for all 𝑖
● [𝑉]𝑖 := Query([𝑋]𝑖 , [𝛱]𝑖; 𝑞𝑟) for all 𝑖
● Return [𝑉]1 + … + [𝑉]𝑠

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019.

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

28

Aggregator Aggregator

Client

[𝑋]1 , [𝛱]1 [𝑋]2 , [𝛱]2

[𝑉]1

[𝑉]2

𝑑 𝑑

𝑋

Application of FLPs: secure aggregation with Prio3 [draft-irtf-cfrg-vdaf]

[draft-irtf-cfrg-vdaf] Barnes et al. "Verifiable Distributed Aggregation Functions." IRTF draft 09.

Syntax:

𝛱 := Prove(𝑋) // proof generation
𝑉 := Query(𝑋, 𝛱; 𝑞𝑟) // query generation
𝑑 := Decide(𝑉) // decision

Full linearity: Query(𝑋, 𝛱; 𝑞𝑟) is equivalent to:

● Split 𝑋, 𝛱 into shares [𝑋]𝑖 , [𝛱]𝑖 for all 𝑖
● [𝑉]𝑖 := Query([𝑋]𝑖 , [𝛱]𝑖; 𝑞𝑟) for all 𝑖
● Return [𝑉]1 + … + [𝑉]𝑠

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

29

Application of FLPs: federated learning with PINE [ROCT23]

[ROCT23] Rothblum et al. "PINE: Efficient Norm-Bound Verification for Secret-Shared Vectors." USENIX 2024.

[draft-chen-cfrg-vdaf-pine]

● PINE: A VDAF for federated learning

● Aggregating real-valued vectors
(gradients) with bounded L2-norm

● FLP for L2 norm computation; new
techniques for checking correctness of
computation

● More practical than Prio for larger
models

L2 norm: ||𝐱||2 = ((𝑥1)
2 + … + (𝑥𝑑)

2)1/2

https://arxiv.org/abs/2311.10237
https://arxiv.org/abs/2311.10237
https://datatracker.ietf.org/doc/html/draft-chen-cfrg-vdaf-pine-00

Fully linear proofs [BBCG+19]

30

● Constructing FLPs

● Define validity via a circuit C: If 𝑋 ∈ 𝓛, then C(𝑋)=0;
but if 𝑋 ∉ 𝓛, then C(𝑋)≠0

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019.

Building VDAFs

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

Fully linear proofs [BBCG+19]

31

● Constructing FLPs

● Define validity via a circuit C: If 𝑋 ∈ 𝓛, then C(𝑋)=0;
but if 𝑋 ∉ 𝓛, then C(𝑋)≠0

def counter(x: F) -> F:
 return x * (x-1)

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019.

Building VDAFs

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

Fully linear proofs [BBCG+19]

32

● Constructing FLPs

● Define validity via a (randomized) circuit C: If 𝑋 ∈
𝓛, then C(𝑋)=0; but if 𝑋 ∉ 𝓛, then C(𝑋)≠0 (w.h.p.)

def counter(x: F) -> F:
 return x * (x-1)

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

def histogram(x: list[F], r: list[F]) -> F:
 rng_chk = sum(r[0]**i * x[i] * (x[i]-1) for i in range(len(x)))
 sum_chk = sum(x) * (sum(x)-1)
 return r[1] * rng_chk + r[1]**2 * sum_chk

Test
assert histogram([0, 0, 0, 0], rand_vec(2)) == 0
assert histogram([0, 0, 1, 0], rand_vec(2)) == 0
assert histogram([0, 0, 999, 0], rand_vec(2)) != 0
assert histogram([1, 0, 1, 0], rand_vec(2)) != 0

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019.

Building VDAFs

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

● Constructing FLPs

● Define validity via a (randomized) circuit C: If 𝑋 ∈
𝓛, then C(𝑋)=0; but if 𝑋 ∉ 𝓛, then C(𝑋)≠0 (w.h.p.)

def counter(x: F) -> F:
 return x * (x-1)

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

def histogram(x: list[F], r: list[F]) -> F:
 rng_chk = sum(r[0]**i * x[i] * (x[i]-1) for i in range(len(x)))
 sum_chk = sum(x) * (sum(x)-1)
 return r[1] * rng_chk + r[1]**2 * sum_chk

Test
assert histogram([0, 0, 0, 0], rand_vec(2)) == 0
assert histogram([0, 0, 1, 0], rand_vec(2)) == 0
assert histogram([0, 0, 999, 0], rand_vec(2)) != 0
assert histogram([1, 0, 1, 0], rand_vec(2)) != 0

Fully linear proofs [BBCG+19]

33

Problem: circuits usually
involve non-linear

operations ⇒ can't
compute these on secret

shared data

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019.

Building VDAFs

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

Fully linear proofs [BBCG+19]

34

● Constructing FLPs

● Define validity via a (randomized) circuit C: If 𝑋 ∈
𝓛, then C(𝑋)=0; but if 𝑋 ∉ 𝓛, then C(𝑋)≠0 (w.h.p.)

● Proof 𝛱 encodes a polynomial 𝑝 for which 𝑝(𝑖) is the
output of the 𝑖-th non-linear operation

def counter(x: F) -> F:
 return 𝑝(0)

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

def histogram(x: list[F], r: list[F]) -> F:
 rng_chk = sum(r[0]**i * 𝑝(i) for i in range(len(x)))
 sum_chk = 𝑝(len(x))
 return r[1] * rng_chk + r[1]**2 * sum_chk

Test
assert histogram([0, 0, 0, 0], rand_vec(2)) == 0
assert histogram([0, 0, 1, 0], rand_vec(2)) == 0
assert histogram([0, 0, 999, 0], rand_vec(2)) != 0
assert histogram([1, 0, 1, 0], rand_vec(2)) != 0

Observation:
Polynomial evaluation

is linear!

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019.

Building VDAFs

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

Fully linear proofs [BBCG+19]

35

● Constructing FLPs

● Define validity via a (randomized) circuit C: If 𝑋 ∈
𝓛, then C(𝑋)=0; but if 𝑋 ∉ 𝓛, then C(𝑋)≠0 (w.h.p.)

● Proof 𝛱 encodes a polynomial 𝑝 for which 𝑝(𝑖) is the
output of the 𝑖-th non-linear operation

def counter(x: F) -> F:
 return 𝑝(0)

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

● Verifier(s):

● (Each) Verifier evaluates (its share of) C(𝑋) using (its share of) 𝑝

● Run probabilistic test to check that 𝑝 is well-formed (using 𝑞𝑟)

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019.

Building VDAFs

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

Distributed point functions [GI14]

36

● Point function: 𝑓(𝛼)=𝛽 and 𝑓(𝑋)=0 for all 𝑋≠𝛼

● DPF: secret sharing of a point function

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝑋)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝑋) for all 𝑋, 𝑖

[GI14] Gilboa and Ishai. "Distributed Point Functions and their Applications." EUROCRYPT 2014.

Building VDAFs

index value

0 0

1 0

2 0

… …

𝛼 𝛽

… …

https://www.iacr.org/archive/eurocrypt2014/84410245/84410245.pdf
https://www.iacr.org/archive/eurocrypt2014/84410245/84410245.pdf

37

● Prio-style metrics, grouped by attributes (user
agent, software version, geolocation, etc.) without
reducing anonymity set

Application of DPFs: attribute-based metrics [MDP+24]

[MPD+24] Mouris et al. "Mastic: Private Weighted Heavy-Hitters and Attribute-Based Metrics." In submission..

https://eprint.iacr.org/2024/221
https://eprint.iacr.org/2024/221

Incremental distributed point functions [BBCG+21]

38

● Incremental point function: 𝑓(𝑋)=𝛽 for any prefix 𝑋 of 𝛼∈{0,1}𝑛 and 𝑓(𝑋)=0 otherwise

● IDPF: secret-sharing of an incremental point function

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝑋)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝑋) for all 𝑋, 𝑖

[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

Building VDAFs

𝛽0

0 0 𝛽 0

0 1

00 01 𝛼=10 11

https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017

The prefix tree for 𝑡=3

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1011 1111 1001 1001 1100

1100 1111 1001 1001 1101

1111 1100 1111 1001 0100

1111 1001 1001 1001 1001

1101 1001 1100 1111 0100

1001 1011 1001 1011 1001

1110 1111

39

Application of IDPFs: Computing 𝑡-heavy-hitters with Poplar1 [draft-irtf-cfrg-vdaf]

[draft-irtf-cfrg-vdaf] Barnes et al. "Verifiable Distributed Aggregation Functions." IRTF draft 09.

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

302

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1011 1111 1001 1001 1100

1100 1111 1001 1001 1101

1111 1100 1111 1001 0100

1111 1001 1001 1001 1001

1101 1001 1100 1111 0100

1001 1011 1001 1011 1001

1110 1111

40

The prefix tree for 𝑡=3

[draft-irtf-cfrg-vdaf] Barnes et al. "Verifiable Distributed Aggregation Functions." IRTF draft 09.

Application of IDPFs: Computing 𝑡-heavy-hitters with Poplar1 [draft-irtf-cfrg-vdaf]

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

302

16 14

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1011 1111 1001 1001 1100

1100 1111 1001 1001 1101

1111 1100 1111 1001 0100

1111 1001 1001 1001 1001

1101 1001 1100 1111 0100

1001 1011 1001 1011 1001

1110 1111

41

The prefix tree for 𝑡=3

[draft-irtf-cfrg-vdaf] Barnes et al. "Verifiable Distributed Aggregation Functions." IRTF draft 09.

Application of IDPFs: Computing 𝑡-heavy-hitters with Poplar1 [draft-irtf-cfrg-vdaf]

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

302

16 14

0 1

00 01 10 11

13 3 6 8

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1011 1111 1001 1001 1100

1100 1111 1001 1001 1101

1111 1100 1111 1001 0100

1111 1001 1001 1001 1001

1101 1001 1100 1111 0100

1001 1011 1001 1011 1001

1110 1111

42

The prefix tree for 𝑡=3

[draft-irtf-cfrg-vdaf] Barnes et al. "Verifiable Distributed Aggregation Functions." IRTF draft 09.

Application of IDPFs: Computing 𝑡-heavy-hitters with Poplar1 [draft-irtf-cfrg-vdaf]

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

302

16 14

0 1

00 01 10 11

13 3 6 8

0 13 0 3 4 2 1 7

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1011 1111 1001 1001 1100

1100 1111 1001 1001 1101

1111 1100 1111 1001 0100

1111 1001 1001 1001 1001

1101 1001 1100 1111 0100

1001 1011 1001 1011 1001

1110 1111

43

The prefix tree for 𝑡=3

[draft-irtf-cfrg-vdaf] Barnes et al. "Verifiable Distributed Aggregation Functions." IRTF draft 09.

Application of IDPFs: Computing 𝑡-heavy-hitters with Poplar1 [draft-irtf-cfrg-vdaf]

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

302

16 14

0 1

00 01 10 11

13 3 6 8

0 13 0 3 4 2 1 7

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1011 1111 1001 1001 1100

1100 1111 1001 1001 1101

1111 1100 1111 1001 0100

1111 1001 1001 1001 1001

1101 1001 1100 1111 0100

1001 1011 1001 1011 1001

1110 1111

prefix tree
heavy hitters

44

The prefix tree for 𝑡=3

[draft-irtf-cfrg-vdaf] Barnes et al. "Verifiable Distributed Aggregation Functions." IRTF draft 09.

Application of IDPFs: Computing 𝑡-heavy-hitters with Poplar1 [draft-irtf-cfrg-vdaf]

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

Verifiable IDPF [MST24]

45

● IDPF with verifiability of one-hotness

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● ([𝑓(𝑋1), …, 𝑓(𝑋𝑝)]𝑖 , 𝜋𝑖) = Eval(𝑃, 𝐾𝑖, 𝐗) for all 𝐗=(𝑋1, …, 𝑋𝑝), 𝑖

● 𝜋1= 𝜋2 implies 𝑓(𝑋1), …, 𝑓(𝑋𝑝) is a one-hot vector

● Also need to verify that the non-zero value is in-range

● PLASMA [MST24] solves this for the special case that 𝛽=1
(same as Poplar, but with lower round complexity)

● Mastic [MPD+24] solves the general case via FLP ⇒
weighted heavy hitters, attribute-based metrics

[MST24] Mouris et al. "PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries." PETS 2024.
[MPD+24] Mouris et al. "Mastic: Private Weighted Heavy-Hitters and Attribute-Based Metrics." In submission.

Building VDAFs

𝛽0

0 0 𝛽 0

0 1

00 01 𝛼=10 11

https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2024/221
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2024/221

Boolean-to-arithmetic conversion [ABJ+22]

● Use case: aggregating vectors of counters

● Clients send XOR shares of each counter; aggregators convert to shares in
a field suitable for aggregation

● Much more efficient for clients

● Open question: 2-party conversion that is private in the presence of
a malicious aggregator. (Easy in the 3-party, honest-majority setting.)

46[ABJ+22] Addanki et al. "Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares." SCN 2022.

Building VDAFs

https://eprint.iacr.org/2021/576
https://eprint.iacr.org/2021/576

Silently verifiable proofs [RZCGP24]

Building VDAFs

47

● Extends FLP such that proof verification
can be batched across multiple reports

● Much lower aggregator⇔aggregator
bandwidth cost

● Open question: Denial-of-Service
(DoS) risk costs increases as the
fraction of invalid reports increases

● Fine for many deployments, but
too risky for others

● Also possible for VIDPF [MST24]

[RZCGP24] Rathee et al. "Private Analytics via Streaming, Sketching, and Silently Verifiable Proofs." IEEE S&P 2024.
[MST24] Mouris et al. "PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries." PETS 2024.

[RZCGP24]

https://eprint.iacr.org/2024/666
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2024/666
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2024/666

● VDAF: building a box around MPC

● Security goals for VDAFs

● Building VDAFs

● Beyond VDAFs

● MPC hot takes 🌶

48

Heavy hitters via threshold secret sharing [DSG+22]

Beyond VDAFs

49

● Basic idea:

● Each client generates a 𝑡-of-𝑛 secret share
of a key to encrypt its measurement

● After receiving 𝑡 shares, aggregator can
recover the key and decrypt

● Based on an Oblivious PRF (OPRF) [RFC 9497]

● With more recent techniques [LNT24], achieves
the same level of privacy as Poplar (in a slightly
different threat model)

● Achieving robustness is expensive

[DSG+22] Davidson et al. "STAR: Secret Sharing for Private Threshold Aggregation Reporting." CCS 2022.
[RFC 9497] Davidson et al. "Oblivious Pseudorandom Functions (OPRFs) Using Prime-Order Groups."
[LNT24] Li et al. "POPSTAR: Lightweight Threshold Reporting with Reduced Leakage." In submission.

OPRF server

𝑚 𝑘

𝐾enc = OPRF(𝑘, 𝑚)

Client Aggregator
Enc(𝐾enc, 𝑚)

share of 𝐾enc

Client

https://arxiv.org/abs/2109.10074
https://datatracker.ietf.org/doc/rfc9497/
https://eprint.iacr.org/2024/320
https://arxiv.org/abs/2109.10074
https://datatracker.ietf.org/doc/rfc9497/
https://eprint.iacr.org/2024/320

Sparse histograms

Beyond VDAFs

50[BGR+24] Braun et al. "Malicious Security for Sparse Private Histograms." ePrint 2024/469.

● Clients hold pairs (𝛼, 𝛽): for each index 𝛼 held by at
least one client, compute the sum of the values 𝛽

● Protocol of [BGR+24]

● Based on OPRF and multiplicative
homomorphic encryption

● Differentially privacy baked in by default ⇒
much better utility than Poplar with
differential privacy

Differential privacy: aggregate
should not depend "too much" on
any one measurement

Credit: Paille // CC BY-SA 2.0.

https://eprint.iacr.org/2024/469
https://eprint.iacr.org/2024/469
https://www.flickr.com/photos/paille-fr/24559019804

Joining data sources

● Last-touch attribution: count the number of
purchases attributable to an ad

● Put purchases and ad impressions in a
database: for each purchase, find the most
recent ad impression

● IPA ("Interoperable Private Attribution"):
Sorting via the 3-party, honest majority
computation [CHI+19]

51

match key time source trigger

89b0 12:45 c54c 0000

2d14 13:10 c54c 0000

89b0 14:44 3d32 0000

89b0 13:37 0000 153e

match key time source trigger

89b0 14:44 3d32 0000

89b0 13:37 0000 153e

89b0 12:45 c54c 0000

2d14 13:10 c54c 0000

[CHI+19] Chida et al. "An Efficient Secure Three-Party Sorting Protocol with an Honest Majority". ePrint 2019/695.

Beyond VDAFs

https://github.com/patcg-individual-drafts/ipa/blob/main/IPA-End-to-End.md
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/695

● VDAF: building a box around MPC

● Building VDAFs

● Beyond VDAFs

● MPC hot takes 🌶

52

MPC is crypto + distributed systems

MPC hot takes 🌶

53

● While some requirements like memory, CPU, and bandwidth are well-documented in the
literature, many other requirements are not well understood

● Strong versus eventual consistency

● Load balancing across machines

● Moving workloads between machines

Number of parties

54

aggregate result

aggregate shares

input shares

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

● 2 parties fits neatly into client-server
architecture of HTTP

● 3 parties is more complex, but workable

● ≥4 parties is probably too much coordination

MPC hot takes 🌶

Number of rounds

● 1 round: Complete aggregation in a single HTTP request

● ≥2 rounds: Have to keep state across HTTP requests;
less flexibility in the server architecture

55

Leader Helper

Report (encrypted input shares)

report share + init. verify

complete verify

MPC hot takes 🌶

Differential privacy should be baked in

56

● Especially important when the protocol has leakage (e.g.,
heavy hitters)

● Generic composition of VDAF with some DP mechanism
usually has sub-optimal utility

● Challenge: Securely sample shares of discrete Gaussian
or Laplace with low communication cost, in the 2-party
setting [KKL+23]

[KKL+23] Keeler et al. "DPrio: Efficient Differential Privacy with High Utility for Prio." PETS 2023.

MPC hot takes 🌶

Differential privacy: aggregate
should not depend "too much" on
any one measurement

Credit: Paille // CC BY-SA 2.0.

https://petsymposium.org/popets/2023/popets-2023-0086.pdf
https://petsymposium.org/popets/2023/popets-2023-0086.pdf
https://www.flickr.com/photos/paille-fr/24559019804

Thanks!

● Join the mailing list: https://www.ietf.org/mailman/listinfo/Ppm

● Join #ppm in the IETF slack: https://ietf.slack.com/

● Base drafts:

● DAP: https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/

● VDAF: https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

● Individual drafts in progress for new VDAFs, differential privacy,
dealing with Sybil attacks, and more!

57

https://www.ietf.org/mailman/listinfo/Ppm
https://ietf.slack.com/
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

Constructing IDPFs

58

● 𝑃, 𝐾1 and 𝑃, 𝐾2 are concise representations of binary trees: 𝛼-path
nodes are secret shares of 𝛽; and off-path nodes are equal

1259624838

5719 22939 32019 23487

0

00 01 𝛼=10

1

11

5294124838

5719 22939 33518 23487

0

00 01 𝛼=10

1

11

Building VDAFs

Function secret sharing

59

● FSS [BGI16]: split 𝑓 into shares such that [𝑓(𝑋)]1, …, [𝑓(𝑋)]𝑠 can be evaluated for any 𝑋

● Possible to construct efficient schemes for specific classes of functions

● Transforming privacy-only FSS to verifiable FSS

● Arithmetic sketching [BBCG+23] generalizes sketching scheme from
Poplar for achieving robustness with IDPFs

[BGI16] Boyle et al. "Function Secret Sharing: Improvements and Extensions." CCS 2016.
[BBCG+23] Boneh et al. "Arithmetic Sketching." CRYPTO 2023.

Building VDAFs

https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2023/1012
https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2023/1012

Standardized DP mechanisms

● Bridging the DP and MPC communities:

● Secret-sharing the noise [EIKN22, KKL+23]

● Algorithms for sampling from non-uniform distributions (e.g., discrete Gaussian [CKS20])

● Collective experience with privacy/utility trade-off

60
[EIKN21] Eriguchi et al. "Efficient Noise Generation Protocols for Differentially Private Multiparty Computation." FC 2021.
[KKL+23] Keeler et al. "DPrio: Efficient Differential Privacy with High Utility for Prio." PETS 2023.
[CKS20] Canonne et al. "The Discrete Gaussian for Differential Privacy." NuerIPS 2020.

Beyond VDAFs

https://eprint.iacr.org/2022/1391
https://petsymposium.org/popets/2023/popets-2023-0086.php
https://arxiv.org/abs/2004.00010
https://eprint.iacr.org/2022/1391
https://petsymposium.org/popets/2023/popets-2023-0086.php
https://arxiv.org/abs/2004.00010

