
WARP 🌀
Linear-Time Accumulation Schemes

1

Giacomo FenziBenedikt Bünz

Alessandro Chiesa William Wang

ePrint 2025/753

https://eprint.iacr.org/2025/753


Motivation 
aka 

why you should care about 
accumulation schemes



Idea: a pq-signature such as hash-based XMSS? Problem: how to efficiently aggregate? (no homomorphisms...)

Validator 
𝗉𝗄1

Validator 
𝗉𝗄2

Validator 
𝗉𝗄T

Aggregator
𝗌𝗍, 𝗉𝗄⋆, σ⋆

Today: BLS signatures. Problem: they are vulnerable to quantum attacks.

3

Network validators

 𝖲𝗂𝗀𝖵𝖿𝗒(𝗌𝗍, 𝗉𝗄⋆, σ⋆) =? 1

Ethereum is looking for a post-quantum alternative.

σ1

σ2

σT

…
kT ≈ 10

Should be small to 
propagate to network

Should be as efficient 
as possible

Each of 1M+ 
validators 
executes. 

Verification must 
be cheap!

(1) Randomly chosen subcommittee of 
validators agrees on a state  

(2) Each validator in the committee 
generates a signature  

𝗌𝗍
(3) Aggregator batches 

signatures into single one 
(4) & propagates to the network  

(5) Each validator checks the 
aggregated signature

Application: PQ-signature aggregation
Ethereum’s consensus



Application: PQ-signature aggregation
A first idea: use a pqSNARK

4

Let  be a general purpose pqSNARK (e.g. Spartan+WHIR).(P𝖠𝖱𝖦, V𝖠𝖱𝖦)

σ1, …, σT

Aggregator

Prove that 
∀i ∈ [T] : 𝖲𝗂𝗀𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄i, σi) = 1

P𝖠𝖱𝖦 π Is  valid?π
V𝖠𝖱𝖦

Network validators

Aggregator needs 
memory Ω(T)

depends on |π | log T Can we do better?
PQ secure ✅

Compressing 
|π | ≪ T ⋅ |σ |

Cheap 
verification ✅

✅

🌪 Wednesday at 9:00 
Proof systems track



Incrementally Verifiable Computation (IVC)
To prove  ,  prove  such that .xT = FT(x0) ∃x1, …, xT−1 ∀i ∈ [T], xi = F(xi−1)

⊥

x0

P𝖨𝖵𝖢

π1

x1F

P𝖨𝖵𝖢

π2

x2F

P𝖨𝖵𝖢

π3

x3F

5

 checks 
that  attests the  

whole computation!

V𝖨𝖵𝖢(xi−1, xi, πi)
πi

IVC can be generalized to Proof-Carrying-Data (PCD). 

PCD considers a directed acyclic graph instead of a line.

PCD in practice is preferable to IVC, as it enables reducing the prover's latency. Let’s apply IVC to 

the initial idea.

In signature aggregation: 
F((σi, pki), bi) := bi ∧ 𝖲𝗂𝗀𝖵𝖿𝗒(𝗌𝗍, pki, σi)

 costs  
independent from   ✅

P𝖨𝖵𝖢
T



Application: PQ-signature aggregation
Final blueprint:

6

Let  be a post-quantum secure IVC scheme.(P𝖨𝖵𝖢, V𝖨𝖵𝖢)

π Is  valid?π
V𝖨𝖵𝖢

σ1, …, σT

Aggregator Network validators

P

P𝖨𝖵𝖢

F

P𝖨𝖵𝖢

F

P𝖨𝖵𝖢

F

PQ secure ✅ Cheap verification ✅independent from   ✅|π | T Cheap aggregator ✅

* in practice, PCD is used to reduce latency

Wonderful. Where can I get IVC?



P𝖨𝖵𝖢

πi−1

xi−1 F

πi

xi

IVC from SNARKs
Recursive proof composition

7

P𝖠𝖱𝖦
Prove that  and 

 accepts 
F(xi−1) = xi

V𝖠𝖱𝖦 πi−1

V𝖨𝖵𝖢

V𝖠𝖱𝖦
Check  is a valid proofπi

(*) more complex than this, 
needs preprocessing

PQ SNARK  
 PQ IVC ✅⟹

Cheap verification ✅

independent from   ✅|π | T

Memory costs 
independent from   ✅T

Cost of   
Concretely:  constraints 

i.e. recursive overhead is quite large 
Good starting point, but can be improved!

P𝖨𝖵𝖢 ≈ |F | + |V𝖠𝖱𝖦 |
|V𝖠𝖱𝖦 | ≈ 220



Accumulation Schemes
A lightweight tool for batching
Enables batching many checks  into an accumulator . 


 verifies that adding the inputs into  was done correctly


 decides whether  is valid.

(xi, wi) ∈? ℛ 𝖺𝖼𝖼
V𝖠𝖢𝖢 𝖺𝖼𝖼
D𝖠𝖢𝖢 𝖺𝖼𝖼

𝖺𝖼𝖼1, …, 𝖺𝖼𝖼ℓ2

(x1, w1), …, (xℓ1
, wℓ1

)

P𝖠𝖢𝖢

𝖺𝖼𝖼

𝗉𝖿

If:

V𝖠𝖢𝖢((xi)i, (𝖺𝖼𝖼j)j, 𝖺𝖼𝖼, 𝗉𝖿) = 1a)

D𝖠𝖢𝖢(𝖺𝖼𝖼) = 1b)

Then w.h.p:
 ∀i ∈ [ℓ1] : (xi, wi) ∈ ℛ

∀j ∈ [ℓ2] : D𝖠𝖢𝖢(𝖺𝖼𝖼j) = 1

8

This talk: ℓ := ℓ1 + ℓ2

Any ARG yields ACC with 
. 

We can do (significantly) better!
|V𝖠𝖢𝖢 | ≈ ℓ1 ⋅ |V𝖠𝖱𝖦 |

These might have accumulated 
many instance-witness pairs



P𝖨𝖵𝖢
xi−1 xi

V𝖨𝖵𝖢

V𝖠𝖢𝖢(xi−1, 𝖺𝖼𝖼i−1, 𝖺𝖼𝖼i, 𝗉𝖿i)

D𝖠𝖢𝖢(𝖺𝖼𝖼i)

P𝖠𝖢𝖢
Prove that  and  

 verified  was 
correctly accumulated

F(xi−1) = xi
V𝖠𝖢𝖢 𝖺𝖼𝖼i−1

Wrap with a final SNARK 
 succinct verification ✅⟹

IVC from accumulation

9

(*) actually we need a more refined notion: 
"split" accumulation schemes

𝖺𝖼𝖼i

𝗉𝖿i

Cost of  V𝖨𝖵𝖢 ≈ |V𝖠𝖢𝖢 | + |D𝖠𝖢𝖢 |
PQ Accumulation  

 PQ IVC ✅⟹ independent from   ✅|π | T

Memory costs 
independent from   ✅T

Cost of  ✅P𝖨𝖵𝖢 ≈ |F | + |V𝖠𝖢𝖢 |
≪ |V𝖠𝖱𝖦 |

Not succinct

𝖺𝖼𝖼i−1

𝗉𝖿i−1

F



One more thing…
ACC is not limited to signature aggregation

10

Accumulation schemes:

Accumulation schemes are broadly useful for integrity in distributed systems with repeated computations.

Verifiable Virtual Machines (VVMs)

+ At least 20 more…

Digital provenance And more…

Consensus

Nova, Supernova, Hypernova, 
Protostar, Protogalaxy, NeutronNova, 

KZHFold, …

Group-based

Latticefold, Lova, Latticefold+, Neo

Lattice-based Awh, ARC, [TODAY]

Hash-based
Must use 256-bit fields, accumulation 

time super-linear, cycles of curves 
required for recursion, not pq

Very promising, 
accumulation costs super-

linear, plausibly pq 
some field flexibility

Accumulation costs can be linear, 
plausibly pq, full field flexibility

https://x.com/eth_proofs/status/1918926204834320684


Our results



PESAT generalizes: 
R1CS, CCS, GR1CS…

Polynomial Equation Satisfiability

ℛ𝖯𝖤𝖲𝖠𝖳(𝔽) = (i, x, w) :

i = (p̂, M, N, k)
x ∈ 𝔽N−k

w ∈ 𝔽k

∀i ∈ [M] : p̂i(x, w) = 0
Polynomial over  in  variables.𝔽 N

12

e.g. R1CS: for  and :  such that  A, B, C ∈ 𝔽M×N x ∈ 𝔽N−k ∃w ∈ 𝔽N−k A [x
w] ∘ B [x

w] = C [x
w]

Define . The equivalent PESAT condition becomes:


“  such that ”

p̂i(Z) = ⟨ai, Z⟩ ⋅ ⟨bi, z⟩ − ⟨ci, z⟩

∃w ∈ 𝔽N−k ∀i ∈ [M] : p̂i(x, w) = 0



WARP 🌀
An essentially optimal hash-based accumulation scheme

13

To accumulate  instances of  and accumulatorsℓ ℛ𝖯𝖤𝖲𝖠𝖳(𝔽)

Prover cost:  -ops and  random oracle queriesO(ℓ ⋅ | p̂ | ) 𝔽 O(k)

Verifier cost:  -ops and

  random oracle queries 
O(ℓ ⋅ (log N + log M + λ)) 𝔽
O(ℓ ⋅ λ ⋅ log k)

Decider cost:  -ops and  random oracle queries O(p̂) 𝔽 O(k)

Same complexity as deciding the 
instances and accumulators!

Optimal for hash-based

Secure in the pure random oracle model (no other cryptography needed).

Can be instantiated over every  that is sufficiently large for soundness.𝔽

In fact, can be instantiated over 
every  using field extensions. 

Asymptotics vary.
𝔽



Comparison

hash-based? linear prover? verifier size 
(RO queries)

Brakedown ✅ ✅

Blaze ✅ ✅

Group or lattice-based 
accumulation (Nova, etc.) ❌ ❌

Arc ✅ ❌

This work ✅ ✅

FACS (concurrent) ✅ ✅

O(λ ⋅ log k)

O(λ ⋅ k)

O(λ ⋅ log2 k)

O(λ ⋅ log k)

O(1)

14

O(λ ⋅ log k)

In this slide 
ℓ = O(1)



On Hash-Based 
Accumulation



16

Hash-Based Reductions

P V

Interactive reduction 
ℛ → ℛ′￼

(x, w) ∈? ℛ

(x′￼, w′￼) ∈? ℛ′￼

w′￼ x′￼

(x, w) x

Interactive oracle reduction

P V

(x, w) ∈? ℛ

w′￼ x′￼

(x, w) x

(x′￼, w′￼) ∈? ℛ′￼

Oracles allow for 
succinct verification

π

Hash-Based  
(Non-Interactive) Reduction

Core of hash-based 
accumulation schemes

Standard techniques: 
Merkle Trees + FS

P

w′￼

(x, w)

V

x′￼

x
(x, w) ∈? ℛ

(x′￼, w′￼) ∈? ℛ′￼

Typically, want to reduce 
 ℛℓ → ℛ

e.g. sumcheck protocol

Our focus!



IORs of Proximity
𝖨𝖮𝖯𝖯 : 𝖠𝖱𝖦 = 𝖨𝖮𝖱𝖯 : 𝖠𝖢𝖢

Π1

Π2

Π3

P V

(x, w) x

x′￼w′￼

Completeness

If  then (x, y, w) ∈ R (x′￼, y′￼, w′￼) ∈ R

 can depend on y′￼

(y, Π1, Π2, …, )

Soundness

If  then w.h.p. Δ(y, R[x]) > δ Δ(y′￼, R[x′￼]) > δ′￼

17

Not enough, must be 
state-restoration 

sound for FS security
Not enough must be 

knowledge-sound too

Proof length 


Queries 

𝗅 ≈ O(k)

𝗊 ≈ O(λ)

Large, think 220

Small, think ~100

Prover RO queries O(𝗅)

Verifier RO queries O(𝗊 ⋅ log 𝗅)
+ RO

Also an oracle

y

, y′￼



Accumulation from IORs

18

PESAT 𝖨𝖮𝖱1

ℛ𝖯𝖤𝖲𝖠𝖳(𝔽) → ℛ𝖺𝖼𝖼

Batching 𝖨𝖮𝖱𝖯2

ℛℓ
𝖺𝖼𝖼 → ℛ𝖺𝖼𝖼

ℛ𝖯𝖤𝖲𝖠𝖳(𝔽) ℛ𝖯𝖤𝖲𝖠𝖳(𝔽)…

 instances of the relationℓ1

ℛ𝖺𝖼𝖼 ℛ𝖺𝖼𝖼…

 accumulatorsℓ2

ℛ𝖺𝖼𝖼 ℛ𝖺𝖼𝖼…

 accumulatorsℓ

ℛ𝖺𝖼𝖼 ℛ𝖺𝖼𝖼…

…𝖨𝖮𝖱1 𝖨𝖮𝖱1

1 accumulator

ℛ𝖺𝖼𝖼

𝖨𝖮𝖱𝖯2

Reduce PESAT to proximity of an 
(encoded) witness to a relation

Hash-based accumulation 
constructed by compiling with 
Merkle Trees and Fiat-Shamir

Batches many instances of 
accumulation relation into a single one

Final IOR   ℛ𝖯𝖤𝖲𝖠𝖳(𝔽)ℓ1 × ℛℓ2
𝖺𝖼𝖼 → ℛ𝖺𝖼𝖼



Conclusion



Recap

Accumulation

Ethereum’s  
consensus 

VVMs

…

IVC 
&  

PCD
Applications Group-based

Lattice-based

Hash-based

IORs

ℛ𝖯𝖤𝖲𝖠𝖳 → ℛ𝖺𝖼𝖼 ℛℓ
𝖺𝖼𝖼 → ℛ𝖺𝖼𝖼

WARP 🌀
Lots I could not cover today!

Out of domain samples for 
general linear codes

Twin-constraint 
pseudobatching

New notions of 
round-by-round 
knowledge 
soundness!

Want to hear more?

William will present WARP 🌀! 

May 12th in Toronto.

More details @ zksummit.com 

http://zksummit.com


Extra slides



Application: PQ-signature aggregation
Ethereum’s consensus
• Ethereum’s consensus requires validator to sign a message, which is aggregated to a single signature 

and distributed to the network. Currently using BLS signatures (vulnerable to quantum attacks).


• Replace the signature with hash-based XMSS. Problem: how to efficiently aggregate? No 
homomorphic structure to exploit.

Approach a): use pqSNARK to show: 
∀i ∈ [T] : 𝖲𝗂𝗀𝖵𝖿𝗒(𝗉𝗄i, m, σi)
Pros:  

•  
• PQ security 
Cons: 
•  
• Memory usage is also 

|π | ≪ T ⋅ |σi |

|π | = O(T)
O(T)

Approach b): use IVC with: 
F(i, σi) = 𝖲𝗂𝗀𝖵𝖿𝗒(𝗉𝗄i, m, σi)

•  independent of  
• Memory usage also independent of 

|π | T
T

P𝖨𝖵𝖢

F

P𝖨𝖵𝖢

F

V𝖨𝖵𝖢

P𝖨𝖵𝖢

F

V𝖨𝖵𝖢

22


