
Michele Orrù, CNRS
Revisiting Keyed-Verification Anonymous Credentials

ia.cr/2024/1552

https://ia.cr/2024/1552

Present

presentation
user verifier

Authentication
protocols

2

Issue

user

issuer

request

credential

Present

presentation
user verifier

Authentication
protocols

2

Issue

user

issuer

request

credential

Issue

Present

3

Anonymous
Credentials

Issue

Present

3

Present

Present

Anonymous
Credentials

Issue

Present

3

Present

Present

Anonymous
Credentials

Issue

Present

3

Present

Present

Anonymous
Credentials

Issue

Present

3

Present

Present

- 2023. draft-irtf-cfrg-bbs-signatures
- 2024. draft-kalos-bbs-blind-signatures
- 2024. draft-kalos-bbs-per-verifier-linkability
- 2024. draft-ladd-privacypass-bbs
- 2025. draft-yun-cfrg-arc
- 2025. draft-google-cfrg-libzk

Anonymous
Credentials

https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/
https://datatracker.ietf.org/doc/draft-kalos-bbs-blind-signatures/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-per-verifier-linkability/
https://datatracker.ietf.org/doc/draft-ladd-privacypass-bbs/
https://datatracker.ietf.org/doc/draft-yun-cfrg-arc/
https://datatracker.ietf.org/doc/draft-google-cfrg-libzk/

Taxonomy of
anonymous credentials
Transforming public to keyed-verification not possible in the DL setting.
It is possible to build present-many from present-once.

4

keyed

verification

public

verification

present 
many

present

once

[CMZ14]

[BBDT17]

[PS16]

[BBS04]

anonymous
tokens

blind
signatures

Taxonomy of
anonymous credentials
Transforming public to keyed-verification not possible in the DL setting.
It is possible to build present-many from present-once.

4

keyed

verification

public

verification

present 
many

present

once

[CMZ14]

[BBDT17]

[PS16]

[BBS04]

anonymous
tokens

blind
signatures

Taxonomy of
anonymous credentials
Transforming public to keyed-verification not possible in the DL setting.
It is possible to build present-many from present-once.

4

keyed

verification

public

verification

present 
many

present

once

[CMZ14]

[BBDT17]

[PS16]

[BBS04]

anonymous
tokens

blind
signatures

Taxonomy of
anonymous credentials
Transforming public to keyed-verification not possible in the DL setting.
It is possible to build present-many from present-once.

4

keyed

verification

public

verification

present 
many

present

once

[CMZ14]

[BBDT17]

[PS16]

[BBS04]

anonymous
tokens

blind
signatures

[Groth15]

Taxonomy of
anonymous credentials
Transforming public to keyed-verification not possible in the DL setting.
It is possible to build present-many from present-once.

4

keyed

verification

public

verification

present 
many

present

once

[CMZ14]

[BBDT17]

[PS16]

[BBS04]

anonymous
tokens

blind
signatures

[Groth15]

Taxonomy of
anonymous credentials
Transforming public to keyed-verification not possible in the DL setting.
It is possible to build present-many from present-once.

4

keyed

verification

public

verification

present 
many

present

once

[CMZ14]

[BBDT17]

[PS16]

[BBS04]

anonymous
tokens

blind
signatures

[Groth15]

Taxonomy of
anonymous credentials
Transforming public to keyed-verification not possible in the DL setting.
It is possible to build present-many from present-once.

4

keyed

verification

public

verification

present 
many

present

once

[CMZ14]

[BBDT17]

[PS16]

[BBS04]

anonymous
tokens

blind
signatures

[Groth15]

5

5

credential

Cooking credentials 🍳

6

signature cryptographic proofcredential

+=

Cooking credentials 🍳

6

signature cryptographic proofcredential

+=

Cooking credentials 🍳

⚠ Credentials can be based on one-way functions.

6

signature cryptographic proofcredential

+= draft-orru-zkproof-sigma-protocols

draft-google-cfrg-libzk

Cooking credentials 🍳

Ligero

Privacy Pass (RFC9578)

draft-yun-cfrg-arc
draft-kalos-bbs-blind-signatures BBS signatures

RSA Blind Signatures (RFC9474)
VOPRF (RFC9497)

draft-ietf-spice-sd-cwt

⚠ Credentials can be based on one-way functions.

CMZ message authentication codes

draft-orru-zkproof-fiat-shamir

JWT (RFC7519)
ECDSA (FIPS 186-3)

6

signature cryptographic proofcredential

+= draft-orru-zkproof-sigma-protocols

draft-google-cfrg-libzk

Cooking credentials 🍳

Ligero

Privacy Pass (RFC9578)

draft-yun-cfrg-arc
draft-kalos-bbs-blind-signatures BBS signatures

RSA Blind Signatures (RFC9474)
VOPRF (RFC9497)

draft-ietf-spice-sd-cwt

In practice, one can also build a credential system with an accumulator and a cryptographic proof. See e.g. semaphore.dev.
⚠ Credentials can be based on one-way functions.

CMZ message authentication codes

draft-orru-zkproof-fiat-shamir

JWT (RFC7519)
ECDSA (FIPS 186-3)

6

signature cryptographic proofcredential +=

Using credentials

7

signature cryptographic proofcredential +=

Using credentials

7

desirable: compatibility

signature cryptographic proofcredential +=

Using credentials

7

desirable: compatibility
e.g. sign "attributes" n mod p

signature cryptographic proofcredential +=

Using credentials

7

extension
+

access policy
⚠ credential engineers are on their own}

desirable: compatibility
e.g. sign "attributes" n mod p

signature cryptographic proofcredential +=

Using credentials

7

extension
+

access policy
⚠ credential engineers are on their own}

desirable: compatibility
e.g. sign "attributes" n mod p

These systems are already deployed!

extensions

Contribution
1. Modular view of credentials + extensions.
2. New schemes: (BBS MAC) and (PS MAC).μ𝖡𝖡𝖲 μ𝖢𝖬𝖹

8

credential system

proof system

message authentication code

extensions

First contribution
Modular view of credentials + extensions.

9

credential system

proof system

message authentication code

Extensions
What can be built on top of selective disclosure of attributes.

10

Rate-Limiting
The user can access a resource at
most times. N

Pseudonyms
The user can access a new resource
with an ephemeral identity.

url <-> identity

Issuer-hiding
The user can access a new resource
with a new ephemeral identity.

Revocation
The user is not in a blocklist.

Metadata
Assign some attributes to the user.

Expiry
The user has a timestamp attribute
that is not expired.

11

Security of keyed-verification credentials

Unforgeability
[malicious user] [malicious issuer]

Anonymity

11

Security of keyed-verification credentials

Unforgeability
[malicious user]

Anonymity
[malicious issuer]

• covers both issuance and presentation
• computationally unbounded adversaries

11

Security of keyed-verification credentials

Anonymity
[malicious issuer]

• covers both issuance and presentation
• computationally unbounded adversaries

One-more unforgeability
[malicious user]

• forging more messages than allowed
• weaker guarantees, useful for tokens

Extractability
[malicious user]

• extract from issuance and presentation
• man-in-the middle adversaries
• stronger guarantees, useful for extensions

11

Security of keyed-verification credentials

Anonymity
[malicious issuer]

• covers both issuance and presentation
• computationally unbounded adversaries

One-more unforgeability
[malicious user]

• forging more messages than allowed
• weaker guarantees, useful for tokens

Extractability
[malicious user]

• extract from issuance and presentation
• man-in-the middle adversaries
• stronger guarantees, useful for extensions

keyed-verification credentials

11

Security of keyed-verification credentials

Anonymity
[malicious issuer]

• covers both issuance and presentation
• computationally unbounded adversaries

One-more unforgeability
[malicious user]

• forging more messages than allowed
• weaker guarantees, useful for tokens

Extractability
[malicious user]

• extract from issuance and presentation
• man-in-the middle adversaries
• stronger guarantees, useful for extensions

keyed-verification credentials

anonymous tokens

Second contribution
New schemes: (BBS MAC) and (PS MAC).μ𝖡𝖡𝖲 μ𝖢𝖬𝖹

12

Definitions
Adapt the security analysis to
extractability, one-more
unforgeability, anonymity.

Fix inaccuracies in the previous
proofs of CMZ and BBS.

Proofs

Efficiency
Improved efficiency of CMZ to

 communication and one
less group element for BBS
O(1)

Anonymity
Upgrade CMZ to statistical
anonymity.

Second contribution
New schemes: (BBS MAC) and (PS MAC).μ𝖡𝖡𝖲 μ𝖢𝖬𝖹

12

Definitions
Adapt the security analysis to
extractability, one-more
unforgeability, anonymity.

Fix inaccuracies in the previous
proofs of CMZ and BBS.

Proofs

Efficiency
Improved efficiency of CMZ to

 communication and one
less group element for BBS
O(1)

Anonymity
Upgrade CMZ to statistical
anonymity.

Second contribution
New schemes: (BBS MAC) and (PS MAC).μ𝖡𝖡𝖲 μ𝖢𝖬𝖹

12

Definitions
Adapt the security analysis to
extractability, one-more
unforgeability, anonymity.

Fix inaccuracies in the previous
proofs of CMZ and BBS.

Proofs

Efficiency
Improved efficiency of CMZ to

 communication and one
less group element for BBS
O(1)

Anonymity
Upgrade CMZ to statistical
anonymity.

Second contribution
New schemes: (BBS MAC) and (PS MAC).μ𝖡𝖡𝖲 μ𝖢𝖬𝖹

12

Definitions
Adapt the security analysis to
extractability, one-more
unforgeability, anonymity.

Fix inaccuracies in the previous
proofs of CMZ and BBS.

Proofs

Efficiency
Improved efficiency of CMZ to

 communication and one
less group element for BBS
O(1)

Anonymity
Upgrade CMZ to statistical
anonymity.

Second contribution
New schemes: (BBS MAC) and (PS MAC).μ𝖡𝖡𝖲 μ𝖢𝖬𝖹

12

Definitions
Adapt the security analysis to
extractability, one-more
unforgeability, anonymity.

Fix inaccuracies in the previous
proofs of CMZ and BBS.

Proofs

Efficiency
Improved efficiency of CMZ to

 communication and one
less group element for BBS
O(1)

Anonymity
Upgrade CMZ to statistical
anonymity.

Efficiency of the old schemes
13

Public parameters Credential size Issuance Presentation

𝖢𝖬𝖹 (n + 1)g 2g (2n + 1)g + |π | (n + 2)g + |π |

𝖡𝖡𝖣𝖳 g g + 2λ g + |π | 2g + |π |

 is the security parameter.
 is the number of attributes that the user has.

 is the size of a group element.
 the size of the zero-knowledge proof.

λ
n

g
|π |

 is the security parameter.
 is the number of attributes that the user has.

 is the size of a group element.
 the size of the zero-knowledge proof.

λ
n

g
|π |

My contribution: efficiency
14

Public parameters Credential size Issuance Presentation

μ𝖢𝖬𝖹 (n + 2)g 2g g + |π | (n + 2)g + |π |

μ𝖡𝖡𝖲 g g + 2λ g + |π | 2g + |π |

 is the security parameter.
 is the number of attributes that the user has.

 is the size of a group element.
 the size of the zero-knowledge proof.

λ
n

g
|π |

My contribution: efficiency
14

Public parameters Credential size Issuance Presentation

μ𝖢𝖬𝖹 (n + 2)g 2g g + |π | (n + 2)g + |π |

μ𝖡𝖡𝖲 g g + 2λ g + |π | 2g + |π |

My contribution: efficiency
15

Credential size Issuance Presentation

μ𝖢𝖬𝖹AT (n + 2)g 2g g (n + 2)g + |π |

μ𝖡𝖡𝖲AT g g + 2λ g 2g + |π |

Public parameters

μ𝖢𝖬𝖹 (n + 2)g 2g g + |π | (n + 2)g + |π |

μ𝖡𝖡𝖲 g g + 2λ g + |π | 2g + |π |

 better for μ𝖢𝖬𝖹 n ≤ 2

My contribution: efficiency
15

Credential size Issuance Presentation

μ𝖢𝖬𝖹AT (n + 2)g 2g g (n + 2)g + |π |

μ𝖡𝖡𝖲AT g g + 2λ g 2g + |π |

Public parameters

μ𝖢𝖬𝖹 (n + 2)g 2g g + |π | (n + 2)g + |π |

μ𝖡𝖡𝖲 g g + 2λ g + |π | 2g + |π |

16

𝖡𝖡𝖣𝖳

𝖢𝖬𝖹

Anonymity

GGM

-SDHq

DDH

statistical

Security of the old schemes

Unforgeability

-DL: given compute .
Best attack: .

 is the number of series to the signing oracle.

q G, xG, …, xqG x
O (q + (p ± 1)/q)

q

17

μ𝖡𝖡𝖲

μ𝖢𝖬𝖹

Anonymity

-DL3

-DL(q + 2)

statistical

statistical

Extractability

My contribution: security

-DL: given compute .
Best attack: .

 is the number of series to the signing oracle.

q G, xG, …, xqG x
O (q + (p ± 1)/q)

q

17

μ𝖡𝖡𝖲

μ𝖢𝖬𝖹

Anonymity

-DL3

-DL(q + 2)

statistical

statistical

Extractability

My contribution: security

-DL: given compute .
Best attack: .

 is the number of series to the signing oracle.

q G, xG, …, xqG x
O (q + (p ± 1)/q)

q

17

μ𝖡𝖡𝖲

μ𝖢𝖬𝖹

Anonymity

-DL3

-DL(q + 2)

statistical

statistical

Extractability

My contribution: security

Blueprint

18

credential system

extensions

proof system

message authentication code

Blueprint

18

Construct an algebraic MAC

credential system

extensions

proof system

message authentication code• correctness,
• unforgeability

Blueprint

18

Construct an algebraic MAC

credential system

extensions

proof system

message authentication code• correctness,
• unforgeability (probabilistic)

Blueprint

18

Construct an algebraic MAC

credential system

extensions

proof system

message authentication code

Proof

• correctness,
• unforgeability (probabilistic)

𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

Blueprint

18

Construct an algebraic MAC

credential system

extensions

proof system

message authentication code

Proof

• correctness,
• unforgeability with public parameters(probabilistic)

𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1 ∧ 𝗉𝗉 = 𝖢𝗈𝗆(𝗌𝗄)}

*needed only for keyed-verification credentials

*

Blueprint

18

Construct an algebraic MAC

credential system

extensions

proof system

message authentication code

Proof

• correctness,
• unforgeability with public parameters and validity oracle(probabilistic)

𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1 ∧ 𝗉𝗉 = 𝖢𝗈𝗆(𝗌𝗄)}

*needed only for keyed-verification credentials

*

Blueprint

18

Construct an algebraic MAC

credential system

extensions

proof system

message authentication code

Proof

Blind issuance and presentation

• correctness,
• unforgeability

• issue a MAC over blind attributes
• prove that a MAC is correctly issued
• allow for arbitrary additional predicates to be proven

 with public parameters and validity oracle(probabilistic)

𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1 ∧ 𝗉𝗉 = 𝖢𝗈𝗆(𝗌𝗄)}

*needed only for keyed-verification credentials

*

Blueprint

18

Construct an algebraic MAC

credential system

extensions

proof system

message authentication code

Proof

Blind issuance and presentation

• correctness,
• unforgeability

• issue a MAC over blind attributes
• prove that a MAC is correctly issued
• allow for arbitrary additional predicates to be proven

 with public parameters and validity oracle(probabilistic)

Extension

𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1 ∧ 𝗉𝗉 = 𝖢𝗈𝗆(𝗌𝗄)}

*needed only for keyed-verification credentials

*

Blueprint

18

Construct an algebraic MAC

credential system

extensions

proof system

message authentication code

Proof

Blind issuance and presentation

• correctness,
• unforgeability

• issue a MAC over blind attributes
• prove that a MAC is correctly issued
• allow for arbitrary additional predicates to be proven

 with public parameters and validity oracle(probabilistic)

Extension
Set a predicate to be used within a credential system

𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1 ∧ 𝗉𝗉 = 𝖢𝗈𝗆(𝗌𝗄)}

*needed only for keyed-verification credentials

*

19

extensions

credential system

proof system

message
authentication code

20

Secret key

Building μ𝖢𝖬𝖹
Overview of our scheme for attributes.n = 1

extensions

credential system

proof system

message authentication code

Overview of our scheme for attributes.n = 1

MAC for m ∈ ℤp

1. sk = (x0, x1) ← ℤp

20

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹
Overview of our scheme for attributes.n = 1

extensions

credential system

proof system

message authentication code

Overview of our scheme for attributes.n = 1

MAC for m ∈ ℤp

1. sk = (x0, x1) ← ℤp

20

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹
Overview of our scheme for attributes.n = 1

extensions

credential system

proof system

message authentication code

Overview of our scheme for attributes.n = 1

MAC for m ∈ ℤp

1. sk = (x0, x1) ← ℤp

20

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹
Overview of our scheme for attributes.n = 1

extensions

credential system

proof system

message authentication code

Overview of our scheme for attributes.n = 1

MAC for m ∈ ℤp

1. sk = (x0, x1) ← ℤp

20

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

extensions

credential system

proof system

message authentication code

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)

Overview of our scheme for attributes.n = 1

MAC for m ∈ ℤp

1. sk = (x0, x1) ← ℤp

20

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

extensions

credential system

proof system

message authentication code

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

Overview of our scheme for attributes.n = 1

⋮

MAC for m ∈ ℤp

1. sk = (x0, x1) ← ℤp

20

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

extensions

credential system

proof system

message authentication code

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜

Overview of our scheme for attributes.n = 1

⋮

MAC for m ∈ ℤp

extensions

credential system

proof system

message authentication code

21

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H + xrG, X1 = x1G)

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

𝗑0𝗁 + 𝗑r𝗁,

Overview of our scheme for attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮

extensions

credential system

proof system

message authentication code

21

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H + xrG, X1 = x1G)

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

𝗑0𝗁 + 𝗑r𝗁,

Overview of our scheme for attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮

extensions

credential system

proof system

message authentication code

21

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H + xrG, X1 = x1G)

1. sample
2. return

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

𝗑0𝗁 + 𝗑r𝗁,

Overview of our scheme for attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮

extensions

credential system

proof system

message authentication code

22

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample
2. return

U ← 𝔾

(U, (x0 + xr + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

𝗑0𝗁, 𝗑r,𝗁

Overview of our scheme for attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮

extensions

credential system

proof system

message authentication code

22

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample
2. return

U ← 𝔾

(U, (x0 + xr + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

𝗑0𝗁, 𝗑r,𝗁

Overview of our scheme for attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮

extensions

credential system

proof system

message authentication code

22

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample
2. return

U ← 𝔾

(U, (x0 + xr + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for attributes.n = 1

𝗑0𝗁, 𝗑r,𝗁

Overview of our scheme for attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮

extensions

credential system

proof system

message authentication code

23

1.
2.

sk = (x0, xr, x1, …, xn)
pp = (X0 = x0H, Xr = xrG, X1 = x1G, …, Xn = xnG)

1. sample
2. return

U ← 𝔾

(U, (x0 + xr + x1m1 + ⋯ + xnmn)U)

Secret key

MAC for m1, …, mn

Building μ𝖢𝖬𝖹
Overview of our scheme for attributes.n

Unforgeability (AGM)
Two cases:
•

 reduction to DL
•

 reduction to

∃query j : ∑n
i=1 xim⋆

i = ∑n
i=1 xim

(j)
i

⟹
∀query j : ∑n

i=1 xim⋆
i ≠ ∑n

i=1 xim
(j)
i

⟹ n = 1

extensions

credential system

proof system

message authentication code

24

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample

2. return

u ← ℤp

(U = uH, (x0 + xr)U + C ⋅ u)

Secret key

MAC for C = mX1 ∈ 𝔾

Building μ𝖢𝖬𝖹
One-more unforgeability intuition for attributes.n = 1

extensions

credential system

proof system

message authentication code

24

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample

2. return

u ← ℤp

(U = uH, (x0 + xr)U + C ⋅ u)

Secret key

MAC for C = mX1 ∈ 𝔾

Building μ𝖢𝖬𝖹
One-more unforgeability intuition for attributes.n = 1

= (x0 + xr + x1m)U

}

extensions

credential system

proof system

message authentication code

24

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample

2. return

u ← ℤp

(U = uH, (x0 + xr)U + C ⋅ u)

Secret key

MAC for C = mX1 ∈ 𝔾

Building μ𝖢𝖬𝖹
One-more unforgeability intuition for attributes.n = 1

One-more unforgeability

extensions

credential system

proof system

message authentication code

24

1.
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample

2. return

u ← ℤp

(U = uH, (x0 + xr)U + C ⋅ u)

Secret key

MAC for C = mX1 ∈ 𝔾

Building μ𝖢𝖬𝖹
One-more unforgeability intuition for attributes.n = 1

One-more unforgeability
Is loose and relies on -DL O(1)

extensions

credential system

proof system

message authentication code

25

1.
2.

sk = (x0, xr, x1, …, xn)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample

2. return

u ← ℤp

(U = uH, (x0 + xr)U + C ⋅ u − ρU)

Secret key

MAC for C = mX1 + ρH ∈ 𝔾

Building μ𝖢𝖬𝖹
One-more unforgeability intuition for attributes.n = 1

extensions

credential system

proof system

message authentication code

25

1.
2.

sk = (x0, xr, x1, …, xn)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample

2. return

u ← ℤp

(U = uH, (x0 + xr)U + C ⋅ u − ρU)

Secret key

MAC for C = mX1 + ρH ∈ 𝔾

Building μ𝖢𝖬𝖹
One-more unforgeability intuition for attributes.n = 1

extensions

credential system

proof system

message authentication code

25

1.
2.

sk = (x0, xr, x1, …, xn)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample

2. return

u ← ℤp

(U = uH, (x0 + xr)U + C ⋅ u − ρU)

Secret key

MAC for C = mX1 + ρH ∈ 𝔾

Building μ𝖢𝖬𝖹
One-more unforgeability intuition for attributes.n = 1

extensions

credential system

proof system

message authentication code

25

1.
2.

sk = (x0, xr, x1, …, xn)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample

2. return

u ← ℤp

(U = uH, (x0 + xr)U + C ⋅ u − ρU)

Secret key

MAC for C = mX1 + ρH ∈ 𝔾

Building μ𝖢𝖬𝖹
One-more unforgeability intuition for attributes.n = 1

 relied on ElGamal encryption.𝖢𝖬𝖹

 relies on a single Pedersen commitment.μ𝖢𝖬𝖹

26

 proof systemsμ𝖢𝖬𝖹

extensions

credential system

proof system

message authentication code

26

 proof systemsμ𝖢𝖬𝖹

extensions

credential system

proof system

message authentication code

𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1 ∧ 𝗉𝗉 = 𝖢𝗈𝗆(𝗌𝗄)}

26

 proof systemsμ𝖢𝖬𝖹

extensions

credential system

proof system

message authentication code

⟹ 𝖹𝖪𝖯 {(x0, xr, (U, V)) :
U = uH ∧ V = (x0 + xr)U + uC

∧ x0H = X0 ∧ xrG = Xr }
𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1 ∧ 𝗉𝗉 = 𝖢𝗈𝗆(𝗌𝗄)}

27

extensions

credential system

proof system

message
authentication code

Present

28

 credentialsμ𝖢𝖬𝖹

extensions

credential system

proof system

message authentication code

Issue

commitment_to_attributes,
commitment_proof

mac,mac_proof

presentation_message

Present

28

 credentialsμ𝖢𝖬𝖹

extensions

credential system

proof system

message authentication code

Issue

commitment_to_attributes,
commitment_proof

mac,mac_proof

presentation_message

 𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

Present

28

 credentialsμ𝖢𝖬𝖹

extensions

credential system

proof system

message authentication code

Issue

commitment_to_attributes,
commitment_proof

mac,mac_proof

presentation_message

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

 𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

Present

28

 credentialsμ𝖢𝖬𝖹

extensions

credential system

proof system

message authentication code

Issue

Extractability:
extract attributes
from commitment_to_attributes and presentation.

commitment_to_attributes,
commitment_proof

mac,mac_proof

presentation_message

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

 𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

Present

28

 credentialsμ𝖢𝖬𝖹

extensions

credential system

proof system

message authentication code

Issue

Extractability:
extract attributes
from commitment_to_attributes and presentation.

commitment_to_attributes,
commitment_proof

mac,mac_proof

presentation_message

Anonymity:
extract
from mac_proof, then simulate presentation_message.

𝗌𝗄

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

 𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

29

 credential presentationμ𝖢𝖬𝖹
Presenting a credential for n = 1

extensions

credential system

proof system

message authentication code

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

29

 credential presentationμ𝖢𝖬𝖹
Presenting a credential for n = 1

extensions

credential system

proof system

message authentication code

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
⟹ 𝖹𝖪𝖯{(m, ρ) : V′￼− (x0 + xr)U′￼− x1C = ρH − rX1}

C = mU′￼+ rG
V′￼ = U′￼+ ρH
U′￼ = αU

where{

29

 credential presentationμ𝖢𝖬𝖹
Presenting a credential for n = 1

extensions

credential system

proof system

message authentication code

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
⟹ 𝖹𝖪𝖯{(m, ρ) : V′￼− (x0 + xr)U′￼− x1C = ρH − rX1}

C = mU′￼+ rG
V′￼ = U′￼+ ρH
U′￼ = αU

where{

29

 credential presentationμ𝖢𝖬𝖹
Presenting a credential for n = 1

extensions

credential system

proof system

message authentication code

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
⟹ 𝖹𝖪𝖯{(m, ρ) : V′￼− (x0 + xr)U′￼− x1C = ρH − rX1}

C = mU′￼+ rG
V′￼ = U′￼+ ρH
U′￼ = αU

where{

29

 credential presentationμ𝖢𝖬𝖹
Presenting a credential for n = 1

extensions

credential system

proof system

message authentication code

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
⟹ 𝖹𝖪𝖯{(m, ρ) : V′￼− (x0 + xr)U′￼− x1C = ρH − rX1}

C = mU′￼+ rG
V′￼ = U′￼+ ρH
U′￼ = αU

where{

29

 credential presentationμ𝖢𝖬𝖹
Presenting a credential for n = 1

extensions

credential system

proof system

message authentication code

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
⟹ 𝖹𝖪𝖯{(m, ρ) : V′￼− (x0 + xr)U′￼− x1C = ρH − rX1}

C = mU′￼+ rG
V′￼ = U′￼+ ρH
U′￼ = αU

where{

29

 credential presentationμ𝖢𝖬𝖹
Presenting a credential for n = 1

extensions

credential system

proof system

message authentication code

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

⚠ The reduction needs help in building the instance to verify the proof!

⟹ 𝖹𝖪𝖯{(m, ρ) : V′￼− (x0 + xr)U′￼− x1C = ρH − rX1}
C = mU′￼+ rG
V′￼ = U′￼+ ρH
U′￼ = αU

where{

29

 credential presentationμ𝖢𝖬𝖹
Presenting a credential for n = 1

extensions

credential system

proof system

message authentication code

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

⚠ The reduction needs help in building the instance to verify the proof!

⟹ 𝖹𝖪𝖯{(m, ρ) : V′￼− (x0 + xr)U′￼− x1C = ρH − rX1}
C = mU′￼+ rG
V′￼ = U′￼+ ρH
U′￼ = αU

where{
Solution: zkp instance recovery + decision oracle

Present

30

 credentialsμ𝖢𝖬𝖹AT

extensions

credential system

proof system

message authentication code

Issue

commitment_to_attributes

mac,mac_proof

presentation_message

Present

30

 credentialsμ𝖢𝖬𝖹AT

extensions

credential system

proof system

message authentication code

Issue

commitment_to_attributes

mac,mac_proof

presentation_message

31

extensions

credential system

proof system

message
authentication code

Rate Limiting
Current solutions:
• Cookies
• Location (GeoIP tracking)
• Internet challenges (captchas)

32

Rate Limiting
Current solutions:
• Cookies
• Location (GeoIP tracking)
• Internet challenges (captchas)

32

Anonymity

[malicious issuer]

The user's requests are unlinkable.

Rate Limiting
Current solutions:
• Cookies
• Location (GeoIP tracking)
• Internet challenges (captchas)

32

Anonymity

[malicious issuer]

The user's requests are unlinkable.

Unforgeability

[malicious user]

Users cannot spend more than allowed.

Present
Rate limiting Extension
Current approach: batch issuance of many spend-once credentials.

33

Issue

Present

Present

Rate limiting Extension

34

Issue

commitment()k

mac()k

Server issues a credential for a secret key .

To present the -th time, the user sends:

𝖯𝖱𝖥 k

i

 ti = 𝖯𝖱𝖥(k, i)

Rate limiting Extension

34

Issue

commitment()k

mac()k

Server issues a credential for a secret key .

To present the -th time, the user sends:

𝖯𝖱𝖥 k

i

 π = 𝖹𝖪𝖯 {(k, σ, i) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, k, σ) = 1 ∧
𝖯𝖱𝖥(k, i) = ti ∧ 0 ≤ i < 𝖬𝖠𝖷}

 ti = 𝖯𝖱𝖥(k, i)

Rate limiting Extension

34

Issue

commitment()k

mac()k

Present

Present

Present

t1
t2

Server issues a credential for a secret key .

To present the -th time, the user sends:

𝖯𝖱𝖥 k

i

 π = 𝖹𝖪𝖯 {(k, σ, i) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, k, σ) = 1 ∧
𝖯𝖱𝖥(k, i) = ti ∧ 0 ≤ i < 𝖬𝖠𝖷}

 ti = 𝖯𝖱𝖥(k, i)

Rate limiting Extension

34

Issue

commitment()k

mac()k

Present

Present

Present

t1
t2

Server issues a credential for a secret key .

To present the -th time, the user sends:

𝖯𝖱𝖥 k

i

 π = 𝖹𝖪𝖯 {(k, σ, i) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, k, σ) = 1 ∧
𝖯𝖱𝖥(k, i) = ti ∧ 0 ≤ i < 𝖬𝖠𝖷}

 ti = 𝖯𝖱𝖥(k, i)

Server checks has not been already used.ti

Rate limiting Extension

34

Issue

commitment()k

mac()k

Present

Present

Present

t1
t2

Server issues a credential for a secret key .

To present the -th time, the user sends:

𝖯𝖱𝖥 k

i

Anonymity
Anonymity of the underlying credential.
Pseudorandomness of the PRF.

 π = 𝖹𝖪𝖯 {(k, σ, i) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, k, σ) = 1 ∧
𝖯𝖱𝖥(k, i) = ti ∧ 0 ≤ i < 𝖬𝖠𝖷}

 ti = 𝖯𝖱𝖥(k, i)

Server checks has not been already used.ti

Rate limiting Extension

34

Issue

commitment()k

mac()k

Present

Present

Present

t1
t2

Server issues a credential for a secret key .

To present the -th time, the user sends:

𝖯𝖱𝖥 k

i

Anonymity

Unforgeability

Anonymity of the underlying credential.
Pseudorandomness of the PRF.

One-more unforgeability suffices.

 π = 𝖹𝖪𝖯 {(k, σ, i) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, k, σ) = 1 ∧
𝖯𝖱𝖥(k, i) = ti ∧ 0 ≤ i < 𝖬𝖠𝖷}

 ti = 𝖯𝖱𝖥(k, i)

Server checks has not been already used.ti

 PRF(k, i) =
1

k + i
⋅ G

 PRF(k, i) =
1

k + i
⋅ G

Pseudorandomness holds under -DDHI assumption for in a small space.q i

 PRF(k, i, m) =
1

k + i
⋅ 𝖧(m)

 PRF(k, i, m) =
1

k + i
⋅ 𝖧(m)

Pseudorandomness holds (in the random oracle model) under -DDHI assumption for in a small space.
The message can be from an arbitrarily large space!

q i
m ∈ {0,1}⋆

Wrapping up

37 ia.cr/2024/1552m@orru.net

https://ia.cr/2024/1552
mailto:m@orru.net

Wrapping up

37 ia.cr/2024/1552m@orru.net

https://ia.cr/2024/1552
mailto:m@orru.net

Wrapping up

37 ia.cr/2024/1552m@orru.net

https://ia.cr/2024/1552
mailto:m@orru.net

Wrapping up

37

More in the paper:

ia.cr/2024/1552m@orru.net

https://ia.cr/2024/1552
mailto:m@orru.net

Wrapping up

37

More in the paper:
• analysis of μ𝖡𝖡𝖲

ia.cr/2024/1552m@orru.net

https://ia.cr/2024/1552
mailto:m@orru.net

Wrapping up

37

More in the paper:
• analysis of μ𝖡𝖡𝖲
• other extensions

expiry, pseudonyms, public metadata,
attribute randomization

ia.cr/2024/1552m@orru.net

https://ia.cr/2024/1552
mailto:m@orru.net

Wrapping up

37

More in the paper:
• analysis of μ𝖡𝖡𝖲
• other extensions

expiry, pseudonyms, public metadata,
attribute randomization

• other proof systems
constant-size range proofs without pairings

ia.cr/2024/1552m@orru.net

https://ia.cr/2024/1552
mailto:m@orru.net

Revisiting
Keyed-Verification
Anonymous Credentials

38 ia.cr/2024/1552m@orru.net

https://ia.cr/2024/1552
mailto:m@orru.net

