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Cooking credentials  🍳

6



signature cryptographic proofcredential

+=

Cooking credentials  🍳

6



signature cryptographic proofcredential

+=

Cooking credentials  🍳

⚠ Credentials can be based on one-way functions.

6



signature cryptographic proofcredential

+= draft-orru-zkproof-sigma-protocols

draft-google-cfrg-libzk

Cooking credentials  🍳

Ligero

Privacy Pass (RFC9578)

draft-yun-cfrg-arc
draft-kalos-bbs-blind-signatures BBS signatures

RSA Blind Signatures (RFC9474)
VOPRF (RFC9497)

draft-ietf-spice-sd-cwt

⚠ Credentials can be based on one-way functions.

CMZ message authentication codes

draft-orru-zkproof-fiat-shamir

JWT (RFC7519)
ECDSA (FIPS 186-3)

6



signature cryptographic proofcredential

+= draft-orru-zkproof-sigma-protocols

draft-google-cfrg-libzk
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draft-yun-cfrg-arc
draft-kalos-bbs-blind-signatures BBS signatures

RSA Blind Signatures (RFC9474)
VOPRF (RFC9497)

draft-ietf-spice-sd-cwt

In practice, one can also build a credential system with an accumulator and a cryptographic proof. See e.g. semaphore.dev. 
⚠ Credentials can be based on one-way functions.
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extension
+

access policy
⚠ credential engineers are on their own}

desirable: compatibility
e.g. sign  "attributes" n mod p

These systems are already deployed!
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Extensions
What can be built on top of selective disclosure of attributes.
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Rate-Limiting
The user can access a resource at 
most  times. N

Pseudonyms
The user can access a new resource 
with an ephemeral identity.  

url <-> identity

Issuer-hiding
The user can access a new resource 
with a new ephemeral identity.  

Revocation
The user is not in a blocklist.

Metadata
Assign some attributes to the user.

Expiry
The user has a timestamp attribute 
that is not expired.
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Security of keyed-verification credentials

Anonymity
[malicious issuer]

• covers both issuance and presentation 
• computationally unbounded adversaries

One-more unforgeability
[malicious user]

• forging more messages than allowed 
• weaker guarantees, useful for tokens

Extractability
[malicious user]

• extract from issuance and presentation 
• man-in-the middle adversaries 
• stronger guarantees, useful for extensions

keyed-verification credentials

anonymous tokens
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• correctness, 
• unforgeability

• issue a MAC over blind attributes 
• prove that a MAC is correctly issued 
• allow for arbitrary additional predicates to be proven
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Set a predicate to be used within a credential system

𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
𝖹𝖪𝖯{(𝗌𝗄, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1 ∧ 𝗉𝗉 = 𝖢𝗈𝗆(𝗌𝗄)}

*needed only for keyed-verification credentials 

*



19

extensions 

credential system  

proof system 

message 
authentication code



20

Secret key

Building μ𝖢𝖬𝖹
Overview of our scheme for  attributes.n = 1

extensions 

credential system  

proof system 

message authentication code

Overview of our scheme for  attributes.n = 1

MAC for m ∈ ℤp



1. sk = (x0, x1) ← ℤp

20

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹
Overview of our scheme for  attributes.n = 1

extensions 

credential system  

proof system 

message authentication code

Overview of our scheme for  attributes.n = 1

MAC for m ∈ ℤp



1. sk = (x0, x1) ← ℤp

20

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹
Overview of our scheme for  attributes.n = 1

extensions 

credential system  

proof system 

message authentication code

Overview of our scheme for  attributes.n = 1

MAC for m ∈ ℤp



1. sk = (x0, x1) ← ℤp

20

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹
Overview of our scheme for  attributes.n = 1

extensions 

credential system  

proof system 

message authentication code

Overview of our scheme for  attributes.n = 1

MAC for m ∈ ℤp



1. sk = (x0, x1) ← ℤp

20

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

extensions 

credential system  

proof system 

message authentication code

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)

Overview of our scheme for  attributes.n = 1

MAC for m ∈ ℤp



1. sk = (x0, x1) ← ℤp

20

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

extensions 

credential system  

proof system 

message authentication code

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

Overview of our scheme for  attributes.n = 1

⋮

MAC for m ∈ ℤp



1. sk = (x0, x1) ← ℤp

20

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

extensions 

credential system  

proof system 

message authentication code

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜

Overview of our scheme for  attributes.n = 1

⋮

MAC for m ∈ ℤp



extensions 

credential system  

proof system 

message authentication code

21

1.  
2.

sk = (x0, xr, x1)
pp = (X0 = x0H + xrG, X1 = x1G)

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

𝗑0𝗁 + 𝗑r𝗁,

Overview of our scheme for  attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮



extensions 

credential system  

proof system 

message authentication code

21

1.  
2.

sk = (x0, xr, x1)
pp = (X0 = x0H + xrG, X1 = x1G)

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

𝗑0𝗁 + 𝗑r𝗁,

Overview of our scheme for  attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮



extensions 

credential system  

proof system 

message authentication code

21

1.  
2.

sk = (x0, xr, x1)
pp = (X0 = x0H + xrG, X1 = x1G)

1. sample  
2. return 

U ← 𝔾

(U, (x0 + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

𝗑0𝗁 + 𝗑r𝗁,

Overview of our scheme for  attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮



extensions 

credential system  

proof system 

message authentication code

22

1.  
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample  
2. return 

U ← 𝔾

(U, (x0 + xr + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

𝗑0𝗁, 𝗑r,𝗁

Overview of our scheme for  attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮



extensions 

credential system  

proof system 

message authentication code

22

1.  
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample  
2. return 

U ← 𝔾

(U, (x0 + xr + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

𝗑0𝗁, 𝗑r,𝗁

Overview of our scheme for  attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮



extensions 

credential system  

proof system 

message authentication code

22

1.  
2.

sk = (x0, xr, x1)
pp = (X0 = x0H, Xr = xrG, X1 = x1G)

1. sample  
2. return 

U ← 𝔾

(U, (x0 + xr + x1m)U)

Secret key

MAC for m ∈ ℤp

Building μ𝖢𝖬𝖹

Unforgeability (AGM)

Overview of our scheme for  attributes.n = 1

𝗑0𝗁, 𝗑r,𝗁

Overview of our scheme for  attributes.n = 1

𝗎, 𝗎 ⋅ (𝗑0 + m ⋅ 𝗑1)
𝗎′￼, 𝗎′￼⋅ (𝗑0 + m′￼⋅ 𝗑1)

𝗎⋆ ⋅ (𝗑0 + m⋆ ⋅ 𝗑1)𝗎⋆,
𝒜
⋮



extensions 

credential system  

proof system 

message authentication code

23

1.  
2.

sk = (x0, xr, x1, …, xn)
pp = (X0 = x0H, Xr = xrG, X1 = x1G, …, Xn = xnG)

1. sample  
2. return 

U ← 𝔾

(U, (x0 + xr + x1m1 + ⋯ + xnmn)U)

Secret key

MAC for m1, …, mn

Building μ𝖢𝖬𝖹
Overview of our scheme for  attributes.n

Unforgeability (AGM)
Two cases: 
•  

      reduction to DL   
•  

      reduction to 

∃query j : ∑n
i=1 xim⋆

i = ∑n
i=1 xim

( j)
i

⟹
∀query j : ∑n

i=1 xim⋆
i ≠ ∑n

i=1 xim
( j)
i

⟹ n = 1
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Secret key

MAC for C = mX1 + ρH ∈ 𝔾

Building μ𝖢𝖬𝖹
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⟹ 𝖹𝖪𝖯 {(x0, xr, (U, V)) :
U = uH ∧ V = (x0 + xr)U + uC

∧ x0H = X0 ∧ xrG = Xr }
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Issue

Extractability:  
extract attributes 
from commitment_to_attributes and presentation.  

commitment_to_attributes, 
commitment_proof

mac,mac_proof

presentation_message

Anonymity:  
extract   
from mac_proof, then simulate presentation_message.

𝗌𝗄

 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}
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 𝖹𝖪𝖯{(m, σ) : 𝗏𝖾𝗋𝗂𝖿𝗒(𝗌𝗄, m, σ) = 1}

⚠ The reduction needs help in building the instance to verify the proof!

⟹ 𝖹𝖪𝖯{(m, ρ) : V′￼− (x0 + xr)U′￼− x1C = ρH − rX1}
C = mU′￼+ rG
V′￼ = U′￼+ ρH
U′￼ = αU

where{
Solution: zkp instance recovery + decision oracle
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Anonymity

[malicious issuer]

The user's requests are unlinkable.

Unforgeability

[malicious user]

Users cannot spend more than allowed.
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Present

Present

t1
t2

Server issues a credential for a secret  key . 

To present the -th time, the user sends:

𝖯𝖱𝖥 k

i

Anonymity

Unforgeability

Anonymity of the underlying credential. 
Pseudorandomness of the PRF. 

One-more unforgeability suffices.
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Server checks  has not been already used.ti



 PRF(k, i) =
1

k + i
⋅ G



 PRF(k, i) =
1

k + i
⋅ G

Pseudorandomness holds under -DDHI assumption for  in a small space.q i



 PRF(k, i, m) =
1

k + i
⋅ 𝖧(m)



 PRF(k, i, m) =
1

k + i
⋅ 𝖧(m)

Pseudorandomness holds (in the random oracle model) under -DDHI assumption for  in a small space.  
The message  can be from an arbitrarily large space!

q i
m ∈ {0,1}⋆
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More in the paper: 
• analysis of μ𝖡𝖡𝖲
• other extensions 

expiry, pseudonyms,  public metadata,  
attribute randomization 

• other proof systems 
constant-size range proofs without pairings
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