To Trust, or Not to Trust: Results from Analyzing and Refining Bluetooth Secure Connections

Olga Sanina

Cryptographic Applications Workshop

May the Force, 2025

••• ATHENE National Research Center for Applied Cybersecurit

Disclaimer

Based on the joint work with Marc Fischlin.

Opinions are my own.

The presentation serves for educational purposes only.

Why do you analyze a technology from the 1990s?!

Not TLS, eh? Are you sure? You could be great, you know, it's all here in your head,

and TLS will help you on the way to greatness, no doubt about that—no?

Everything is better with Bluetooth.

ROBOTIC

tine, term, term, to

Bluetooth Connection: User Experience

Bluetooth is a BIG protocol suite

Bluetooth Low Energy (LE)

Bluetooth Classic (BR/EDR)

Idea behind Bluetooth Key Exchange in SC

🗙 No PKI

Q Let's involve the user!

A Highly constrained devices

But the user doesn't understand...

High-Level SC Protocol Flow

Bluetooth Classic (BR/EDR)

[Lin09] Lindell. Comparison-based key exchange and the security of the numeric comparison mode in Bluetooth v2.1, CT-RSA 2009

[SS19] Sun and Sun. On secure simple pairing in bluetooth standard v5.0-part i: Authenticated link key security and its home automation and entertainment applications, *Sensors 2019* [TH21] Troncoso and Hale. The bluetooth cyborg: Analysis of the full human-machine passkey entry ake protocol, *NDSS 2021*

Why Analyzing Bluetooth is Difficult?

1039 / 3816 🛛 — 150% 🕂 🕄 🔊

To protect a device's private key, a device should implement a method to prevent an attacker from retrieving useful information about the device's private key. For this purpose, a device should change its private key after every pairing (successful or failed). Otherwise, it should change its private key whenever S + 3F > 8, where S is the number of successful pairings and F the number of failed attempts since the key was last changed.

PKax denotes the x-coordinate of the public key PKa of A.

		Q	€	☆
authentication	1/916	^	~	×

arly, PKbx denotes the x-coordinate of the public key PKb of B.

Olga Sanina | To Trust, or Not to Trust: Results from Analyzing and Refining Bluetooth Secure Connections | CAW 2025 | 12

The takeaway? For mesh messaging in large-scale protests... Cryptography alone won't save us.

© Tushar Jois, RWC'25

"Mesh Messaging for Large-Scale Protests: Cryptography Alone Won't Save Us"

Wireless Standard Organizations vs Crypto Community vs Security Community

Distribution of the Attacks (2021)

Results [FS21]

Resulting analysis:

- Includes full SC protocol family
- Trust-On-First-Use (TOFU) model in [BR93]-style

Properties:

- Key Secrecy
- Match Security

Adversarial oracles

- InitSession
- Reconnect
- NextPK
- No Corrupt

[FS21] Fischlin and Sanina. Cryptographic analysis of the bluetooth secure connection protocol suite, *Asiacrypt* 2021 [BR93] Bellare and Rogaway. Entity authentication and key distribution, *CRYPTO* '93

TOFU (Trust-On-First-Use) Model [FS21]

[FS21] Fischlin and Sanina. Cryptographic analysis of the bluetooth secure connection protocol suite, Asiacrypt 2021

Can we do better?

Bluetooth[®] security notices

Vulnerability	Publication Date	Details	Specifications Affected	CVE [NVD]
SUPPLEMENT: Impersonation in the Passkey Entry Protocol	19/09/2024	SIG Security Notice	Core Spec v2.1 to 5.4	CVE-2021-37577
BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses	27/11/2023	SIG Security Notice	Core Spec v4.2 to 5.2	CVE-2023-24023
Pairing Mode Confusion in Bluetooth LE Passkey Entry	09/12/2022	SIG Security Notice	Core Spec v4.0 to 5.3	CVE-2022-25836
Pairing Mode Confusion in BR/EDR	09/12/2022	SIG Security Notice	Core Spec v1.0B to 5.3	CVE-2022-25837
InjectaBLE: Injecting malicious traffic into established Bluetooth Low Energy connections	21/06/2021	SIG Security Notice	Core Spec, v4.0 to 5.2	CVE-2021-31615
Bluetooth Mesh Profile AuthValue leak	24/05/2021	SIG Security Notice	Mesh Profile Spec, v1.0 to v1.0.1	CVE-2020-26559
Malleable commitment in Bluetooth Mesh Profile provisioning	24/05/2021	SIG Security Notice	Mesh Profile Spec, v1.0 to v1.0.1	CVE-2020-26556
Predictable Authvalue in Bluetooth Mesh Profile provisioning leads to MITM	24/05/2021	SIG Security Notice	Mesh Profile Spec, v1.0 to v1.0.1	CVE-2020-265

Distribution of the Attacks (2021)

Distribution of the Attacks (2024)

Fix... is problematic

Dniversal fix for the whole stack against all attacks

Backward compatibility:

- No changes in the protocol
- No storage of the transcript

How to Do Better Than TOFU?

OOB: QR-codes / NFC

Q User Confirmation (e.g., in Signal and WhatsApp)

 $authData \leftarrow HMAC(LK, challengeA||challengeB)$

Verify *cert*^{*B*} and σ_B

Mutual authentication: same protocol but with reversed roles

Our Solution

Run additional authentication step!

- Links authentication to derived L(T)Ks
- 🗱 Uses existing functions
- Z Can run at any point of time

3 Two types of the schemes: DH-based and signature-based \rightarrow 4 in total

Distribution of the Attacks (2024)

Results [FS24]

Extended the trust-on-first-use (TOFU) [FS21] security model... to add deferrable-outside-first-use (DOFU) authentication

Proved BR/EDR to be secure in TOFU-or-DOFU model... but failed with BLE 😕

Security Notion	BR/EDR	BLE
Match Security	\checkmark	\checkmark
Authentication	\checkmark	\checkmark
Leakage Resistance	\checkmark	\checkmark
Key Secrecy	\checkmark	X

[FS24] Fischlin and Sanina. Fake It till You Make It: Enhancing Security of Bluetooth Secure Connections via Deferrable Authentication, CCS 2024 [FS21] Fischlin and Sanina. Cryptographic analysis of the bluetooth secure connection protocol suite, Asia crypt 2021

(Instead of) Conclusion

\equiv Cryptology ePrint Archive Q	\equiv Cryptology ePrint Archive Q	\equiv Cryptology ePrint Archive Q	
Match anything	Match anything	Match anything	
Match title	Match title Signal	Match title Bluetooth	
Match authors	Match authors	Match authors	
Category All categories	Category All categories	Category All categories	
Search Clear Help	Search Clear Help	Search Clear Help	
85 results sorted by ID	32 results sorted by ID	18 results sorted by ID	

(Instead of) Conclusion

