
Designing a Post-Quantum
Ratchet for Signal

CAW 2025 Madrid

Benedikt
Auerbach

Yevgeniy
Dodis

Thomas
Prest

Daniel
Jost

Rolfe
Schmidt

Shuichi
Katsumata

Graeme
Connell

The Signal Protocol

The Signal Protocol

● Considered a standard for two-user Secure Messaging (SM)
● Used in Signal, WhatsApp, Google Messages, and more.
● Not designed to be quantum safe.

The Signal Protocol

● Considered a standard for two-user Secure Messaging (SM)
● Used in Signal, WhatsApp, Google Messages, and more.
● Not designed to be quantum safe.

We want to be well ahead of the threat and ensure
that our users’ privacy is preserved in a post-

quantum world.

Signal Protocol = PQXDH + Double Ratchet

PQXDH

Handshake protocol
establishes a HNDL

secure shared
secret.

Double Ratchet

Symmetric Ratchet
Symmetric crypto based FS

Diffie-Hellman (Public)
Ratchet

ECDH-based PCS

…

Signal Protocol = PQXDH + Double Ratchet

PQXDH

Handshake protocol
establishes a HNDL

secure shared
secret.

Double Ratchet

Symmetric Ratchet
Symmetric crypto based FS

Diffie-Hellman
(Public) Ratchet
ECDH-based PCS

…

Not Quantum
Safe!
☢

We need quantum-
safe PCS.

We need a new Public
Ratchet.

Post Quantum Secure Messaging

The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]

The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]

The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]

The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]

The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]

32B for curve25519

a1

The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]

a1

🔒🔒

🔒

The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]

a1

🔒🔒

🔒

The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]

They Healed!

That’s Post
Compromise Security
(PCS).

A Post Quantum Ratchet

We can also build Continuous Key Agreement (CKA) from a
KEM (like ML-KEM) [EC:ACD19]

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)

A Post Quantum Ratchet

We can also build Continuous Key Agreement (CKA) from a
KEM (like ML-KEM) [EC:ACD19]

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)

ek2||ct1
(dk2,ek2) ← KEM.gen()

(k1, ct1) ← KEM.encaps(ek1)
k1 ← KEM.decaps(dk1, ct1)

A Post Quantum Ratchet

We can also build Continuous Key Agreement (CKA) from a
KEM (like ML-KEM) [EC:ACD19]

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)

ek2||ct1
(dk2,ek2) ← KEM.gen()

(k1, ct1) ← KEM.encaps(ek1)
k1 ← KEM.decaps(dk1, ct1)

ek3||ct2(dk3,ek3) ← KEM.gen()

(k2, ct2) ← KEM.encaps(ek2)
k2 ← KEM.decaps(dk2, ct2)

A Post Quantum Ratchet

We can also build Continuous Key Agreement (CKA) from a
KEM (like ML-KEM) [EC:ACD19]

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)

ek2||ct1
(dk2,ek2) ← KEM.gen()

(k1, ct1) ← KEM.encaps(ek1)
k1 ← KEM.decaps(dk1, ct1)

ek3||ct2(dk3,ek3) ← KEM.gen()

(k2, ct2) ← KEM.encaps(ek2)
k2 ← KEM.decaps(dk2, ct2)

For ML-KEM 768 this is
2272 bytes.

Median DR message
size today is 66 bytes -
and that includes the
32B DH message.

Ouch.

35x
Using ML-KEM 768 like this would increase the size of a typical small message by

a factor of 35.

This costs us and our users.

This affects usability for users with poor connections.

Working With Bandwidth Limits

💡
Break a big message into
small chunks.

Send one chunk per message.

🤔
But it has to work even
if messages are
(maliciously) dropped!

Chunking with (Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder

Chunking with (Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder

c1

c2

c3

c4

c100
…

…
st

re
am

 o
f c

od
ew

or
ds

Codewords are
● Fixed size
● Smaller than the initial

message
● First N codewords

concatenated are the initial
message*

Chunking with (Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder

c1

c2

c3

c4

c100
…

…
st

re
am

 o
f c

od
ew

or
ds

lo
ng

 m
es

sa
ge

Decoder

Any N codewords can
be used to decode!

Codewords are
● Fixed size
● Smaller than the initial

message
● First N codewords

concatenated are the initial
message*

Secure Messaging
with Sparse CKA

Now we can take any CKA and turn it
into a “chunked” protocol.

Note: It isn’t a CKA anymore
syntactically because it doesn’t emit a
new key every time it sends or
receives a message.

So we define a “Sparse CKA” (SCKA)
and show how to construct secure
Messaging from a Sparse CKA.

Still sending
messages
but nothing
to do for this
protocol…

Secure Messaging
with Sparse CKA

Now we can take any CKA and turn it
into a “chunked” protocol.

Note: It isn’t a CKA anymore
syntactically because it doesn’t emit a
new key every time it sends or
receives a message.

So we define a “Sparse CKA” (SCKA)
and show how to construct secure
Messaging from a Sparse CKA.

EK1 || CT0

Alex Blake

Still sending
messages
but nothing
to do for this
protocol…

Secure Messaging
with Sparse CKA

Now we can take any CKA and turn it
into a “chunked” protocol.

Note: It isn’t a CKA anymore
syntactically because it doesn’t emit a
new key every time it sends or
receives a message.

So we define a “Sparse CKA” (SCKA)
and show how to construct secure
Messaging from a Sparse CKA.

EK1 || CT0

EK2 || CT1

Alex Blake

Still sending
messages
but nothing
to do for this
protocol…

Still sending
messages
but nothing
to do for this
protocol…

Secure Messaging
with Sparse CKA

Now we can take any CKA and turn it
into a “chunked” protocol.

Note: It isn’t a CKA anymore
syntactically because it doesn’t emit a
new key every time it sends or
receives a message.

So we define a “Sparse CKA” (SCKA)
and show how to construct secure
Messaging from a Sparse CKA.

EK1 || CT0

EK2 || CT1

EK3 || CT2

Alex Blake

Still sending
messages
but nothing
to do for this
protocol…

Still sending
messages
but nothing
to do for this
protocol…

Still sending
messages
but nothing
to do for this
protocol…

So we’re done?

● Use ML-KEM to instantiate the KEM-based CKA from [EC:ACD19].
● Use our “chunking compiler” to turn it into an SCKA.
● Drop this into our SCKA-based Secure Messaging protocol to get messaging

with MLWE-based security.
● Hybridize it with the classic double ratchet.

So we’re done?

● Use ML-KEM to instantiate the KEM-based CKA from [EC:ACD19].
● Use our “chunking compiler” to turn it into an SCKA.
● Drop this into our SCKA-based Secure Messaging protocol to get messaging

with MLWE-based security.
● Hybridize it with the classic double ratchet.

No.

Improving SCKA Protocols

The Problems
When we “chunk” the Standard KEM
CKA protocol, there is always
someone sitting quiet.

And look how long Alex and Blake

have to hold onto their secrets. 😬 .

Big attack surface, slow key emission.

Can’t they do something?

EK1 || CT0

Alex Blake

D
K

1🔑

S
S

0🗝 D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑

The Problems
When we “chunk” the Standard KEM
CKA protocol, there is always
someone sitting quiet.

And look how long Alex and Blake

have to hold onto their secrets. 😬 .

Big attack surface, slow key emission.

Can’t they do something?

EK1 || CT0

Alex Blake

D
K

1🔑

S
S

0🗝 D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑

The Problems
When we “chunk” the Standard KEM
CKA protocol, there is always
someone sitting quiet.

And look how long Alex and Blake

have to hold onto their secrets. 😬 .

Big attack surface, slow key emission.

Can’t they do something?

EK1 || CT0

EK2 || CT1

Alex Blake

D
K

1🔑

D
K

2🔑

S
S

1🗝

S
S

0🗝 D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑

The Problems
When we “chunk” the Standard KEM
CKA protocol, there is always
someone sitting quiet.

And look how long Alex and Blake

have to hold onto their secrets. 😬 .

Big attack surface, slow key emission.

Can’t they do something?

EK1 || CT0

EK2 || CT1

EK3 || CT2

Alex Blake

D
K

1🔑

D
K

2🔑

S
S

1🗝

S
S

0🗝 D
K

0🔑

D
K

3🔑S
S

2🗝

KEM Shared Secret 🗝

Decapsulation Key 🔑

Competing ways to Do Better™:
1.Reduce the attack surface.
2.Blocked? Sample and send!
3.Open up the KEM black box.

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

S
S

0 D
K

0🔑

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

S
S

0 D
K

0🔑

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

S
S

0 D
K

0🔑

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

D
K

1🔑
S

S
0

EK1

D
K

0🔑

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

D
K

1🔑

S
S

1

S
S

0

EK1

D
K

0🔑

CT1

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

D
K

1🔑

S
S

1

S
S

0

EK1

D
K

0🔑

CT1

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

D
K

1🔑

D
K

2🔑
S

S
1

S
S

0

EK1

D
K

0🔑

CT1

EK2

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

D
K

1🔑

D
K

2🔑
S

S
1

S
S

0

EK1

D
K

0🔑

CT2

EK3

CT1

EK2
S

S
2

D
K

3🔑

1. Reduce the Attack
Surface

We can do a little better by sending
EK and CT separately and minimize
the time we need to store
decapsulation keys

CT0

Alex Blake

D
K

1🔑

D
K

2🔑
S

S
1

S
S

0

EK1

D
K

0🔑

CT2

EK3

CT1

EK2
S

S
2

D
K

3🔑

But notice! this
protocol seems better,
but it doesn’t emit new
shared secrets any
faster on average.

🤔

2. Sample Early!
We can emit keys almost twice as
fast as before by having Blake just
sample a new keypair when they are
stuck and start sending.

Alex Blake

2. Sample Early!
We can emit keys almost twice as
fast as before by having Blake just
sample a new keypair when they are
stuck and start sending.

Alex Blake

D
K

A
0🔑

EK-A0

D
K

B
0🔑

EK-B0

2. Sample Early!
We can emit keys almost twice as
fast as before by having Blake just
sample a new keypair when they are
stuck and start sending.

Alex Blake

D
K

A
0🔑

EK-A0

D
K

B
0🔑

EK-B0

CT-B0

S
S

A
0

🗝CT-A0

S
S

B
0🗝

2. Sample Early!
We can emit keys almost twice as
fast as before by having Blake just
sample a new keypair when they are
stuck and start sending.

Alex Blake

D
K

A
0🔑

EK-A0

D
K

B
0🔑

EK-B0

CT-B0

S
S

A
0

🗝CT-A0

S
S

B
0🗝

D
K

A
1🔑

EK-A1

D
K

B
1🔑

EK-B1

CT-B1

S
S

A
1

🗝CT-A1

S
S

B
1🗝

2. Sample Early!
We can emit keys almost twice as
fast as before by having Blake just
sample a new keypair when they are
stuck and start sending.

Alex Blake

But notice! this
protocol emits keys
almost 2x faster but
the attacker also gets
more secrets per
compromise. Is it 2x
as good?

🤔

D
K

A
0🔑

EK-A0

D
K

B
0🔑

EK-B0

CT-B0

S
S

A
0

🗝CT-A0

S
S

B
0🗝

D
K

A
1🔑

EK-A1

D
K

B
1🔑

EK-B1

CT-B1

S
S

A
1

🗝CT-A1

S
S

B
1🗝

2. Sample Early!
We can emit keys almost twice as
fast as before by having Blake just
sample a new keypair when they are
stuck and start sending.

Alex Blake

But notice! this
protocol emits keys
almost 2x faster but
the attacker also gets
more secrets per
compromise. Is it 2x
as good?

🤔

D
K

A
0🔑

EK-A0

D
K

B
0🔑

EK-B0

CT-B0

S
S

A
0

🗝CT-A0

S
S

B
0🗝

D
K

A
1🔑

EK-A1

D
K

B
1🔑

EK-B1

CT-B1

S
S

A
1

🗝CT-A1

S
S

B
1🗝

And how do they agree on the order of the keys? What happens when
messaging is unbalanced? Et cetera…

3. Open the KEM Black Box: Incremental
KEM

An ML-KEM Encapsulation key has two parts:

1. A 32B seed that gets expanded into a
matrix A.

2. A “noisy vector”, As + e, where s is a
decapsulation secret and e is small
error.

An ML-KEM Ciphertext has two parts:

1. A “compressed noisy vector”, ATs’ + e’,
where s’ is a decapsulation secret and
e’ is small error.

2. A “reconciliation message”

seed
(32 B)

EKvec
noisy vector

(1152 B)

M
L-

K
E

M
 7

68
 E

nc
ap

su
la

tio
n

K
ey

CT1
compressed

noisy
vector
(960B)

CT2
Reconciliation

(128 B)

M
L-

K
E

M
 7

68
 C

ip
he

rte
xt

3. Open the KEM Black Box: Incremental
KEM

An ML-KEM Encapsulation key has two parts:

1. A 32B seed that gets expanded into a
matrix A.

2. A “noisy vector”, As + e, where s is a
decapsulation secret and e is small
error.

An ML-KEM Ciphertext has two parts:

1. A “compressed noisy vector”, ATs’ + e’,
where s’ is a decapsulation secret and
e’ is small error.

2. A “reconciliation message”

seed
(32 B)

EKvec
noisy vector

(1152 B)

M
L-

K
E

M
 7

68
 E

nc
ap

su
la

tio
n

K
ey

CT1
compressed

noisy
vector
(960B)

CT2
Reconciliation

(128 B)

M
L-

K
E

M
 7

68
 C

ip
he

rte
xt

We only need seed

and H(EK) - 64B - to

compute this part!

3. Open the KEM Black Box: Incremental
KEM

An ML-KEM Encapsulation key has two parts:

1. A 32B seed that gets expanded into a
matrix A.

2. A “noisy vector”, As + e, where s is a
decapsulation secret and e is small
error.

An ML-KEM Ciphertext has two parts:

1. A “compressed noisy vector”, ATs’ + e’,
where s’ is a decapsulation secret and
e’ is small error.

2. A “reconciliation message”

seed
(32 B)

EKvec
noisy vector

(1152 B)

M
L-

K
E

M
 7

68
 E

nc
ap

su
la

tio
n

K
ey

CT1
compressed

noisy
vector
(960B)

CT2
Reconciliation

(128 B)

M
L-

K
E

M
 7

68
 C

ip
he

rte
xt

We only need seed

and H(EK) - 64B - to

compute this part!

We need all of EK
To compute this.

Idea: Now we can
sample CT1 instead of
a new keypair.

Also: Ratcheting KEM
[EC:DJKP25]. See our talk
later this week!

The Protocol Design Space

The design space is large!

● What sort of KEM (Standard, Ratcheting, Incremental)?
● When do you sample a new keypair?
● If you can send an Encapsulation Key or a Ciphertext, which one do you

prioritize?
● When do you send extra data (ACKs) to let the other know what state we’re

in?

How to choose?

● We evaluated over a dozen candidate protocols.
● Our metric is the size of the Vulnerable Message Set: number of messages

were leaked to an attacker by a compromise.
○ This is why we want a “small attack surface” or “fast key emission”.

● This depends on messaging behavior!
○ Balanced or unbalanced?
○ How often are parties online?

● Developed statistical models of typical behaviors and simulated attacks to
compare distributions.

How to choose?
It turns out protocols aren’t
comparable by this metric!

But evaluating many protocols in a
variety of realistic conditions, two
basic protocol types consistently
revealed fewer messages to an
attacker:

● Opportunistic Katana ⚔ (see

our EC talk!)
● Opportunistic Incremental KEM

Here’s what we chose.

The ML-KEM Braid

Main Idea: Send
“header” with seed
and H(EK) first so
Blake can sample CT1
early.

We can do most of the
work in parallel!

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start sending
it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!)
they can start sending CT2.

● When Alex gets CT2 they can
start using the shared secret
and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

We can do most of the
work in parallel!

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start sending
it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!)
they can start sending CT2.

● When Alex gets CT2 they can
start using the shared secret
and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

We can do most of the
work in parallel!

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start sending
it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!)
they can start sending CT2.

● When Alex gets CT2 they can
start using the shared secret
and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

E
S
🔑

CT1

We can do most of the
work in parallel!

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start sending
it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!)
they can start sending CT2.

● When Alex gets CT2 they can
start using the shared secret
and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑 EKvec

E
S
🔑

CT1

We can do most of the
work in parallel!

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start sending
it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!)
they can start sending CT2.

● When Alex gets CT2 they can
start using the shared secret
and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

S
S
🗝

EKvec

E
S
🔑

CT2

CT1

We can do most of the
work in parallel!

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start sending
it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!)
they can start sending CT2.

● When Alex gets CT2 they can
start using the shared secret
and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

S
S
🗝

EKvec

E
S
🔑

CT2

CT1

We can do most of the
work in parallel!

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start sending
it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!)
they can start sending CT2.

● When Alex gets CT2 they can
start using the shared secret
and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

S
S
🗝

EKvec

E
S
🔑

CT2

CT1

header

D
K
🔑

S
S🗝

EKvec

E
S
🔑

CT1

CT2

Real communication
isn’t balanced.

We need to handle all
of the corner cases.

State Machines
We handle all possible cases by
describing a protocol participant as a
state machine.

This maps easily to ProVerif allowing
us to formally verify that the protocol
has the desired security properties.

State Machines
Even without machine checked proofs,
it is straightforward (if tedious) to see
that with the right initial states for Alex
and Blake, the set of accessible pairs
of states is highly constrained.

And can always make forward
progress!

35x 1.6x
Using a 42B per-message bandwidth limit increases the size of a typical small

message by a factor of 1.6.

Still costly, but consistent and reasonable.

But we ratchet much more slowly.

Putting it All Together

Last step: Integrate
the PQ ratchet with
the classic ratchet for
hybrid security.

Double Ratchet as a
Black Box

To hybridize, think of the Double
Ratchet as a Secure Messaging black
box

● Init(secret)
● Send() → (msg, mkenc): get a

protocol message and an
encryption key, no input
needed.

● Recv(msg) → mkenc: Take a
protocol message and get a
decryption key.

Send() SM (msg,mkenc)

SM Recv(msg)mkenc

Double Ratchet as a
Black Box

To hybridize, think of the Double
Ratchet as a Secure Messaging black
box

● Init(secret)
● Send() → (msg, mkenc): get a

protocol message and an
encryption key, no input
needed.

● Recv(msg) → mkenc: Take a
protocol message and get a
decryption key.

Send() SM (msg,mkenc)

SM Recv(msg)mkenc

This is a protocol
message, e.g. a DH public
key with some metadata

DR
Classic

DR Post
Quantum

Now we can hybridize

Compose to SM protocols by KDF-ing the
output keys together.

Combining the existing Double Ratchet
and the ML-KEM Braid based Double
Ratchet we get hybrid DH+MLWE PCS.

Bonus: changes to existing code are
minimal!

SEND SEND

(msg1, mk2)(msg1, mk1)

kenc = KDF(mkC, mkQ)

ct = AE.enc(kenc, “hi”)

Send (msgC,msgQ,ct)

Formal Verification

● We worked with Cryspen from the beginning of implementation
○ Encouraged a proof-friendly modular design that can be analyzed independently
○ Modeled design in ProVerif from the start - and we used this to check design changes ourselves!
○ Prepared a CI pipeline integrating hax.
○ Gave guidance on proof-friendly Rust style (there aren’t many restrictions!)

● Formally verified implementation
○ Proven panic-free with Hax/F*

■ We create security relevant asserts and prove they do not happen!
○ Proven correct finite field operations (for chunking) with Hax/F*
○ Proverif models of ML-KEM Braid and Symmetric Ratchet

● Formal verification is a dynamic part of the engineering process
○ On every push we extract models from the code, then prove safety and correctness.
○ If the proofs fail, the build fails - and we can fix it.

with

There’s Code!
https://github.com/signalapp/
SparsePostQuantumRatchet

https://github.com/signalapp/SparsePostQuantumRatchet
https://github.com/signalapp/SparsePostQuantumRatchet

● We can Do Better if we don’t send that Header.
○ We could derive the seed from session state
○ But we couldn’t use standardized ML-KEM.

● Formal verification will expand.
● Evaluation needs more work!

○ Better models of messaging behavior
○ Quantifiable measures of “robustness” of a protocol?

● There’s another way to open the KEM black box
○ Opportunistic Katana ⚔ [EC:DJKP25] may be the future.
○ See our talk later this week!

This is not the end of the story

Thank you! rolfe@signal.org

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

✉

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

✉

✉

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

✉

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

✉

✉

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

✉

✉

✉

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

✉

✉

✉

✉

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

✉

✉

✉

✉

✉

….

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

✉

✉

✉

✉

✉

…. One month
later…

✉ 😅

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

✉

✉

✉

✉

✉

…. One month
later…

✉ 😅

✉

😠

Amortize the Cost?
Apple’s PQ3 addresses this by
amortizing the cost of the large
message:

● They send one large PQ CKA
message every ~50 messages
or once a week.

● To get immediate decryption
they MUST repeat this large
message until they get a
response.

● Great when two parties are
online!

● But…

You My Laptop

I’ll
send a

key!
✉

✉

✉

✉

✉

✉

✉

✉

…. One month
later…

✉ 😅

✉

😠

You’re not happy.

Signal’s not happy.

I’m not happy because I’m getting
this from everyone.

Maybe your mobile carrier is happy if
you don’t have an unlimited plan?

