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The Signal Protocol



The Signal Protocol

● Considered a standard for two-user Secure Messaging (SM) 
● Used in Signal, WhatsApp, Google Messages, and more. 
● Not designed to be quantum safe. 



The Signal Protocol

● Considered a standard for two-user Secure Messaging (SM) 
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● Not designed to be quantum safe. 

We want to be well ahead of the threat and ensure 
that our users’ privacy is preserved in a post-

quantum world.
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establishes a HNDL 

secure shared 
secret.
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establishes a HNDL 

secure shared 
secret.
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Not Quantum 
Safe! 
☢



We need quantum-
safe PCS. 

We need a new Public 
Ratchet.



Post Quantum Secure Messaging



The Diffie-Hellman Ratchet

DH Ratchet is a Continuous Key Agreement (CKA) [EC:ACD19]
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They Healed!



That’s Post 
Compromise Security 
(PCS).



A Post Quantum Ratchet

We can also build Continuous Key Agreement (CKA) from a 
KEM (like ML-KEM) [EC:ACD19]

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)
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A Post Quantum Ratchet

We can also build Continuous Key Agreement (CKA) from a 
KEM (like ML-KEM) [EC:ACD19]

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)

ek2||ct1
(dk2,ek2) ← KEM.gen()

(k1, ct1) ← KEM.encaps(ek1)
k1 ← KEM.decaps(dk1, ct1)

ek3||ct2(dk3,ek3) ← KEM.gen()

(k2, ct2) ← KEM.encaps(ek2)
k2 ← KEM.decaps(dk2, ct2)

For ML-KEM 768 this is 
2272 bytes. 

Median DR message 
size today is 66 bytes - 
and that includes the 
32B DH message. 

Ouch.



35x
Using ML-KEM 768 like this would increase the size of a typical small message by 

a factor of 35. 

This costs us and our users. 

This affects usability for users with poor connections.



Working With Bandwidth Limits



💡  
Break a big message into 
small chunks.  

Send one chunk per message.



🤔 
But it has to work even 
if messages are 
(maliciously) dropped!
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lo

ng
 m

es
sa

ge Encoder



Chunking with (Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder

c1

c2

c3

c4

c100
…

…
st

re
am

 o
f c

od
ew

or
ds

Codewords are 
● Fixed size 
● Smaller than the initial 

message 
● First N codewords 

concatenated are the initial 
message*



Chunking with (Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder

c1

c2

c3

c4

c100
…

…
st

re
am

 o
f c

od
ew

or
ds

lo
ng

 m
es

sa
ge

Decoder

Any N codewords can 
be used to decode!

Codewords are 
● Fixed size 
● Smaller than the initial 

message 
● First N codewords 

concatenated are the initial 
message*



Secure Messaging 
with Sparse CKA

Now we can take any CKA and turn it 
into a “chunked” protocol. 

Note: It isn’t a CKA anymore 
syntactically because it doesn’t emit a 
new key every time it sends or 
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So we define a “Sparse CKA” (SCKA) 
and show how to construct secure 
Messaging from a Sparse CKA.

Still sending 
messages 
but nothing 
to do for this 
protocol…



Secure Messaging 
with Sparse CKA

Now we can take any CKA and turn it 
into a “chunked” protocol. 

Note: It isn’t a CKA anymore 
syntactically because it doesn’t emit a 
new key every time it sends or 
receives a message. 

So we define a “Sparse CKA” (SCKA) 
and show how to construct secure 
Messaging from a Sparse CKA.

EK1 || CT0

Alex Blake

Still sending 
messages 
but nothing 
to do for this 
protocol…



Secure Messaging 
with Sparse CKA

Now we can take any CKA and turn it 
into a “chunked” protocol. 

Note: It isn’t a CKA anymore 
syntactically because it doesn’t emit a 
new key every time it sends or 
receives a message. 

So we define a “Sparse CKA” (SCKA) 
and show how to construct secure 
Messaging from a Sparse CKA.

EK1 || CT0

EK2 || CT1

Alex Blake

Still sending 
messages 
but nothing 
to do for this 
protocol…

Still sending 
messages 
but nothing 
to do for this 
protocol…



Secure Messaging 
with Sparse CKA

Now we can take any CKA and turn it 
into a “chunked” protocol. 

Note: It isn’t a CKA anymore 
syntactically because it doesn’t emit a 
new key every time it sends or 
receives a message. 

So we define a “Sparse CKA” (SCKA) 
and show how to construct secure 
Messaging from a Sparse CKA.

EK1 || CT0

EK2 || CT1

EK3 || CT2

Alex Blake

Still sending 
messages 
but nothing 
to do for this 
protocol…

Still sending 
messages 
but nothing 
to do for this 
protocol…

Still sending 
messages 
but nothing 
to do for this 
protocol…



So we’re done?

● Use ML-KEM to instantiate the KEM-based CKA from [EC:ACD19]. 
● Use our “chunking compiler” to turn it into an SCKA. 
● Drop this into our SCKA-based Secure Messaging protocol to get messaging 

with MLWE-based security. 
● Hybridize it with the classic double ratchet.
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No.



Improving SCKA Protocols



The Problems
When we “chunk” the Standard KEM 
CKA protocol, there is always 
someone sitting quiet. 

And look how long Alex and Blake 

have to hold onto their secrets. 😬 . 

Big attack surface, slow key emission. 

Can’t they do something?

EK1 || CT0

Alex Blake

D
K

1🔑

S
S

0🗝 D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑



The Problems
When we “chunk” the Standard KEM 
CKA protocol, there is always 
someone sitting quiet. 

And look how long Alex and Blake 

have to hold onto their secrets. 😬 . 

Big attack surface, slow key emission. 

Can’t they do something?

EK1 || CT0

Alex Blake

D
K

1🔑

S
S

0🗝 D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑



The Problems
When we “chunk” the Standard KEM 
CKA protocol, there is always 
someone sitting quiet. 

And look how long Alex and Blake 

have to hold onto their secrets. 😬 . 

Big attack surface, slow key emission. 

Can’t they do something?

EK1 || CT0

EK2 || CT1

Alex Blake

D
K

1🔑

D
K

2🔑

S
S

1🗝

S
S

0🗝 D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑



The Problems
When we “chunk” the Standard KEM 
CKA protocol, there is always 
someone sitting quiet. 

And look how long Alex and Blake 

have to hold onto their secrets. 😬 . 

Big attack surface, slow key emission. 

Can’t they do something?

EK1 || CT0

EK2 || CT1

EK3 || CT2

Alex Blake

D
K

1🔑

D
K

2🔑

S
S

1🗝

S
S

0🗝 D
K

0🔑

D
K

3🔑S
S

2🗝

KEM Shared Secret 🗝

Decapsulation Key 🔑



Competing ways to Do Better™: 
1.Reduce the attack surface. 
2.Blocked? Sample and send! 
3.Open up the KEM black box.
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But notice! this 
protocol seems better, 
but it doesn’t emit new 
shared secrets any 
faster on average. 

🤔
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And how do they agree on the order of the keys? What happens when 
messaging is unbalanced? Et cetera…



3. Open the KEM Black Box: Incremental 
KEM

An ML-KEM Encapsulation key has two parts: 

1. A 32B seed that gets expanded into a 
matrix A. 

2. A “noisy vector”, As + e, where s is a 
decapsulation secret and e is small 
error. 

An ML-KEM Ciphertext has two parts: 

1. A “compressed noisy vector”, ATs’ + e’, 
where s’ is a decapsulation secret and 
e’ is small error. 

2. A “reconciliation message”
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Idea: Now we can 
sample CT1 instead of 
a new keypair.



Also: Ratcheting KEM 
[EC:DJKP25]. See our talk 
later this week!



The Protocol Design Space

The design space is large! 

● What sort of KEM (Standard, Ratcheting, Incremental)? 
● When do you sample a new keypair? 
● If you can send an Encapsulation Key or a Ciphertext, which one do you 

prioritize? 
● When do you send extra data (ACKs) to let the other know what state we’re 

in?



How to choose?

● We evaluated over a dozen candidate protocols. 
● Our metric is the size of the Vulnerable Message Set: number of messages 

were leaked to an attacker by a compromise. 
○ This is why we want a “small attack surface” or “fast key emission”. 

● This depends on messaging behavior! 
○ Balanced or unbalanced? 
○ How often are parties online? 

● Developed statistical models of typical behaviors and simulated attacks to 
compare distributions.



How to choose?
It turns out protocols aren’t 
comparable by this metric! 

But evaluating many protocols in a 
variety of realistic conditions, two 
basic protocol types consistently 
revealed fewer messages to an 
attacker: 

● Opportunistic Katana ⚔ (see 

our EC talk!) 
● Opportunistic Incremental KEM



Here’s what we chose.



The ML-KEM Braid



Main Idea: Send 
“header” with seed  
and H(EK) first so 
Blake can sample CT1 
early. 



We can do most of the 
work in parallel!

● Alex sends the seed first 
● When Blake gets seed, they 

sample CT1 and start sending 
it. 

● When Alex gets a chunk of 
CT1 they can stop sending 
seed and start sending EKvec. 

● Once Blake has all of EKvec 
(and knows Alex has CT1!) 
they can start sending CT2. 

● When Alex gets CT2 they can 
start using the shared secret 
and ACK Blake. 

● When Blake gets the ACK, 
they start using the shared 
secret and swap roles.

header

Alex Blake

D
K
🔑
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Real communication 
isn’t balanced. 

We need to handle all 
of the corner cases.



State Machines
We handle all possible cases by 
describing a protocol participant as a 
state machine. 

This maps easily to ProVerif allowing 
us to formally verify that the protocol 
has the desired security properties.



State Machines
Even without machine checked proofs, 
it is straightforward (if tedious) to see 
that with the right initial states for Alex 
and Blake, the set of accessible pairs 
of states is highly constrained. 

And can always make forward 
progress!



35x 1.6x
Using a 42B per-message bandwidth limit increases the size of a typical small 

message by a factor of 1.6. 

Still costly, but consistent and reasonable. 

But we ratchet much more slowly.



Putting it All Together



Last step: Integrate 
the PQ ratchet with 
the classic ratchet for 
hybrid security.



Double Ratchet as a 
Black Box

To hybridize, think of the Double 
Ratchet as a Secure Messaging black 
box 

● Init(secret) 
● Send() → (msg, mkenc): get a 

protocol message and an 
encryption key, no input 
needed. 

● Recv(msg) → mkenc: Take a 
protocol message and get a 
decryption key.

Send() SM (msg,mkenc)

SM Recv(msg)mkenc



Double Ratchet as a 
Black Box

To hybridize, think of the Double 
Ratchet as a Secure Messaging black 
box 

● Init(secret) 
● Send() → (msg, mkenc): get a 

protocol message and an 
encryption key, no input 
needed. 

● Recv(msg) → mkenc: Take a 
protocol message and get a 
decryption key.

Send() SM (msg,mkenc)

SM Recv(msg)mkenc

This is a protocol 
message, e.g. a DH public 
key with some metadata



DR 
Classic

DR Post 
Quantum

Now we can hybridize

Compose to SM protocols by KDF-ing the 
output keys together. 

Combining the existing Double Ratchet 
and the ML-KEM Braid based Double 
Ratchet we get hybrid DH+MLWE PCS. 

Bonus: changes to existing code are 
minimal!

SEND SEND

(msg1, mk2)(msg1, mk1)

kenc = KDF(mkC, mkQ) 

ct = AE.enc(kenc, “hi”) 

Send (msgC,msgQ,ct)



Formal Verification

● We worked with Cryspen from the beginning of implementation 
○ Encouraged a proof-friendly modular design that can be analyzed independently 
○ Modeled design in ProVerif from the start - and we used this to check design changes ourselves! 
○ Prepared a CI pipeline integrating hax. 
○ Gave guidance on proof-friendly Rust style (there aren’t many restrictions!) 

● Formally verified implementation 
○ Proven panic-free with Hax/F* 

■ We create security relevant asserts and prove they do not happen! 
○ Proven correct finite field operations (for chunking) with Hax/F* 
○ Proverif models of ML-KEM Braid and Symmetric Ratchet 

● Formal verification is a dynamic part of the engineering process 
○ On every push we extract models from the code, then prove safety and correctness. 
○ If the proofs fail, the build fails - and we can fix it.

with



There’s Code! 
https://github.com/signalapp/
SparsePostQuantumRatchet 

https://github.com/signalapp/SparsePostQuantumRatchet
https://github.com/signalapp/SparsePostQuantumRatchet


● We can Do Better if we don’t send that Header. 
○ We could derive the seed from session state 
○ But we couldn’t use standardized ML-KEM. 

● Formal verification will expand. 
● Evaluation needs more work! 

○ Better models of messaging behavior 
○ Quantifiable measures of “robustness” of a protocol? 

● There’s another way to open the KEM black box 
○ Opportunistic Katana  ⚔  [EC:DJKP25] may be the future. 
○ See our talk later this week!

This is not the end of the story



Thank you! rolfe@signal.org



Amortize the Cost?
Apple’s PQ3 addresses this by 
amortizing the cost of the large 
message: 

● They send one large PQ CKA 
message every ~50 messages 
or once a week. 

● To get immediate decryption 
they MUST repeat this large 
message until they get a 
response. 

● Great when two parties are 
online! 

● But…

You My Laptop

✉
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You’re not happy. 

Signal’s not happy. 

I’m not happy because I’m getting 
this from everyone. 

Maybe your mobile carrier is happy if 
you don’t have an unlimited plan?


