
Bytes to Schlep? Use a FEP:
Hiding Protocol Metadata with Fully Encrypted Protocols
Ellis Fenske (U.S. Naval Academy)

Aaron Johnson (U.S. Naval Research Laboratory)

May 26th, 2024
Cryptographic Applications Workshop (CAW 2024)

2

Fully Encrypted Protocols (FEPs)

1. All bytes look random
2. Message lengths variable

Appclient Appserver

FEPclient FEPserver

What is a Fully Encrypted Protocol (FEP)?

Real-world examples:
▪ obfs4 / lyrebird (Tor)
▪ shadowsocks (Outline VPN)
▪ Obfuscated SSH (Psiphon)
▪ OpenVPN + XOR patch
▪ Vmess (V2Ray)

3

Summary of Our Work

▪ Goals not formalized mathematically
▪ Security cannot be proven
▪ Existing FEPs continually present security flaws
▪ IND$-CPA: similar goal but for atomic messaging

Problem: No precise understanding of FEPs

Solutions:
1. New security definitions for FEPs
2. Relations among new and existing security definitions
3. Secure constructions of FEPs
4. Analysis of existing FEPs

4

Status of this Work

▪ Presented early version of this work at FOCI 2023
▪ Future Work from that talk:

1. Proving security of our construction
2. Deriving relations between the security definitions
3. Addressing forward secrecy via key exchange in the

protocol
4. Extending our definitions to the datagram setting

5

Status of this Work

▪ Presented early version of this work at FOCI 2023
▪ Future Work from that talk:

1. Proving security of our construction
2. Deriving relations between the security definitions
3. Addressing forward secrecy via key exchange in the

protocol
4. Extending our definitions to the datagram setting

6

Status of this Work

▪ Presented early version of this work at FOCI 2023
▪ Future Work from that talk:

1. Proving security of our construction
2. Deriving relations between the security definitions
3. Addressing forward secrecy via key exchange in the

protocol
4. Extending our definitions to the datagram setting
▪ Added experimental analysis of existing FEP security

7

Status of this Work

▪ Presented early version of this work at FOCI 2023
▪ Future Work from that talk:

1. Proving security of our construction
2. Deriving relations between the security definitions
3. Addressing forward secrecy via key exchange in the

protocol
4. Extending our definitions to the datagram setting
▪ Added experimental analysis of existing FEP security

▪ Paper available:
▪ Ellis Fenske and Aaron Johnson. “Bytes to Schlep?

Use a FEP: Hiding Protocol Metadata with Fully
Encrypted Protocols”. May 2024.
▪ <https://arxiv.org/abs/2405.13310>

https://arxiv.org/abs/2405.13310

Why FEP?
Existing encrypted protocols reveal metadata
▪ Protocol identity and version
▪ Amount of payload data
▪ Cryptographic primitives being used

Example 1:
TLS Record

Example 2:
WireGuard Datagram

9

Why FEP?

FEP Reason #1: Censorship circumvention
▪ Typical VPN protocols can easily be identified and

blocked
▪ e.g. OpenVPN, WireGuard, IPSec
▪ Censors have blocked VPN protocols (e.g. China,

Russia)
▪ FEPs have been invented multiple times to eliminate

simple protocol fingerprints (e.g. obfs4, shadow
socks, Obfuscated SSH, Vmess)

▪ China has blocked FEPs: Wu et al. “How the Great
Firewall of China Detects and Blocks Fully Encrypted
Traffic”. USENIX Security 2023.

10

Why FEP?

FEP Reason #2: Maximally protects metadata
▪ Protocols increasingly protect metadata
▪ QUIC
▪ TLS 1.3 Encrypted Client Hello
▪ Cryptocurrencies (Ethereum’s RPLx, Lightning’s Bolt)

▪ Metadata can be sensitive
▪ Application(e.g. application-specific protocols)
▪ Domain of the destination (e.g. SNI TLS extension)
▪ Ciphertext primitives in use (some might be vulnerable)

11

Why FEP?

FEP Reason #3: Prevents Internet ossification
▪ Middleboxes develop around observable protocol features
▪ Security firewalls
▪ Traffic shapers

▪ Alternate solution: David Benjamin. 2020. RFC 8701
Applying Generate Random Extensions And Sustain
Extensibility (GREASE) to TLS Extensibility

12

Why FEP?

▪ “Privacy: A third party… cannot tell whether two
connections are using the same pseudorandom cTLS
template”

▪ “Ossification risk”
▪ “TODO: More precise security properties and security

proof. The goal we're after hasn't been widely
considered in the literature so far, at least as far as we
can tell.”

Encrypted Protocols

Non-FEP encrypted protocols innovation is still occurring:
▪ OSCORE: IoT-optimized (2019)
▪ NoiseSocket: generic framework (2017)
▪ WireGuard: VPN (2017)
▪ Bolt: Lightning network (2016)
▪ RLPx: Ethereum (2015)

Why couldn’t these all be FEPs?

14

FEPs in the Network Stack

Generally assume over TCP or UDP
▪ Below transport layer limits developer

agility
▪ Requires permissions for raw-socket

access (e.g. iOS jailbreak)
▪ TCP and UDP are the common

transport protocols
▪ New reliable transports over UDP
▪ e.g. QUIC, kcp
▪ Difficult to accomplish while

protecting metadata
▪ FEP terms
▪ Datastream FEP (e.g. FEP over TCP)
▪ Datagram FEP (e.g. FEP over UDP)

Application Layer

Transport Layer

Internet Layer

Data-Link Layer

Physical Layer

FEP here

Looking at a FEP: obfs4

Tor’s obfs4 (aka lyrebird) is a sophisticated FEP
▪ Uses TCP
▪ Key exchange for forward secrecy
▪ Padding for message-length variation

▪ Handshake
1. Client sends: Elligator-encoded key + random padding
2. Server sends: Elligator-encoded key + random padding

▪ Data-phase messages

2 bytes
Frame length

16 bytes
MAC Tag

1 byte
Type

2 bytes
Payload length

(optional)
Payload

(optional)
Padding

Encrypted (Poly1305/XSalsa20)XOR with PRG

Looking at a FEP: obfs4

2 bytes
Frame length

16 bytes
MAC Tag

1 byte
Type

2 bytes
Payload length

(optional)
Payload

(optional)
Padding

Encrypted (Poly1305/XSalsa20)XOR with PRG

Security issues
1. Length field is malleable
2. obfs4 closes connection upon decryption error
3. #1 + #2 = active attack reveals obfs4 message structure
4. Specific minimum message length despite padding

Let’s define FEP security to rule out such issues.

17

New FEP Security Definitions

1. Passive security:
a. Datastream: FEP-CPFA

(FEP under Chosen Plaintext-Fragment Attacks)
b. Datagram: FEP-CPA

(FEP under Chosen Plaintext Attacks)
2. Active security:

a. Datastream: FEP-CCFA
(FEP under Chosen Ciphertext-Fragment Attacks)

b. Datagram: FEP-CCA
(FEP under Chosen Ciphertext Attacks)

3. Message sizes: Traffic Shaping

18

Datastream Setting

▪ Unidirectional channel
▪ Model allows pre-shared

state
▪ Datastream semantics*
▪ Inputs and outputs treated

as byte streams
▪ Reliable, in-order delivery
▪ Models TCP

SEND RECV

Plaintext
fragmentation

Ciphertext
fragmentation

*Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson. “Data is a
stream: Security of stream-based channels”. CRYPTO 2015.

Appclient Appserver

19

Datagram Setting

▪ Unidirectional channel
▪ Model allows pre-shared

state
▪ Datagram semantics*
▪ Inputs and outputs treated

as atomic messages
▪ Messages may be dropped

or reordered
▪ Models UDP

SEND RECV

*Similar to: Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. “Authenticated
encryption in SSH: provably fixing the SSH binary packet protocol”. ACM CCS 2002.

Appclient Appserver

20

Protocol Model

SEND RECV

Input
m : plaintext message
p : packet length
f : flush flag (datastream)

Output
c : ciphertext

Input
c : ciphertext

Output
m : plaintext message
C : channel close flag  
 (datastream)

In implementation, SEND and RECV would interact with sockets.

21

O0
SEND(m,p,[f])

1. Challenger chooses bit b.
2. Adversary can query

stateful oracle Ob
SEND.

3. Adversary outputs guess b’.
4. Success if b’=b.

Security experiment Real World Random World

Definition: Protocol is
passively FEP secure if
advantage over random
guessing is negligible.

▪ Outputs
SEND(m,p,[f])

▪ Outputs
|SEND(m,p,[f])|
random bytes

O1
SEND(m,p,[f])

Passive FEP Security (datagram and datastream)

22

Active security (datastream):
FEP-CCFA (Chosen Ciphertext-Fragment Attacks)

O0
SEND(m,p,f)

1. Challenger chooses bit b.
2. Adversary can query

stateful oracles Ob
SEND and

Ob
RECV.

3. Adversary outputs guess b’.
4. Success if b’=b.

Security experiment Real World Random World

Definition: Protocol is
FEP-CCFA if advantage
over random guessing is
negligible.

▪ Always returns
channel close
flag C.
▪ Does not return

output message
m unless out of
sync.

▪ Returns channel
close flag
CLOSE(||CS, CR).
▪ Does not return

output message
m.

O1
SEND(m,p,f)

O0
RECV(c) O1

RECV(c)

▪ Outputs
SEND(m,p,f)

▪ Outputs
|SEND(m,p,f)|
random bytes

▪ CLOSE(||CS, CR): Secure close
function
▪ ||CS: concatenated Ob

SEND outputs
▪ CR: Ob

RECV inputs

23

Active security (datagram):
FEP-CCA (Chosen Ciphertext Attacks)

O0
SEND(m,p)

1. Challenger chooses bit b.
2. Adversary can query

stateful oracles Ob
SEND and

Ob
RECV.

3. Adversary outputs guess b’.
4. Success if b’=b.

Security experiment Real World Random World

Definition: Protocol is
FEP-CCA if advantage
over random guessing is
negligible.

▪ Output m
returned if:

1. c not Send
output,

2. m not error, and
3. m not null

▪ Does not return
output m.

O1
SEND(m,p)

O0
RECV(c) O1

RECV(c)

▪ Outputs
SEND(m,p)

▪ Outputs
|SEND(m,p)|
random bytes

▪ null message output
allowed to be ignored
to enable short chaff
messages w/o MAC

24

Secure Close Functions

▪ Secure close function CLOSE(||CS, CR)
▪ ||CS: concatenated SEND outputs
▪ CR: RECV inputs
▪ Ensures closures give no more information than

network observations
▪ E.g. No closure based on plaintext value
▪ Rules out obfs4 behavior because length fields

cannot be identified in concatenated byte sequence
▪ Examples of secure close functions
▪ Never close (e.g. shadowsocks requests)
▪ Close after timeout
▪ Close at first “sync” byte position after modified byte

25

Traffic Shaping

▪ Enables arbitrary-length messages
▪ Generalizes padding functionality of existing FEPs
▪ Avoids protocol-specific minimum-message sizes

Definition (datastream): Protocol satisfies Traffic
Shaping if, for all messages m and p ≥ 0, 
 |SEND(m,p,f=0)| = p, and
 |SEND(m,p,f=1)| ≥ p.

Definition (datagram): Protocol satisfies Traffic Shaping
if, for all messages m and L≥p≥0, with c ← SEND(m,p), 
 If 𝑐 is not an error, then |c| = p, and
 If 𝑚 is null, then c is not an error.

26

Other FEP security requirements*

▪ Confidentiality
▪ IND-CCFA/IND-CCA (Datastream/Datagram)
▪ Not implied by FEP-CCFA/CCA because ciphertext

lengths can leak plaintexts
▪ With length regularity, implied by FEP-CCFA/CCA

▪ Integrity
▪ INT-CST/INT-CTXT (Datastream/Datagram)
▪ Implied by FEP-CCFA/CCA

27

Experimental Analysis of Datastream FEPs

Datastream Protocol Close
Behavior FEP-CPFA FEP-CCFA Length

Obfuscation
Minimum Message
Size

Shadowsocks-libev
(request/response)

Never / 
Auth Fail ✅ ✅ / ❌ None 35

V2Ray-Shadowsocks
(request/response)

Drain / 
Auth Fail ✅ ❌ None 35

V2Ray-VMess Drain ✅ ❌ Padding 18

Obfs4/Lyrebird Auth Fail ✅ ❌ Padding 44

OpenVPN-XOR Auth Fail ❌ ❌ None 42

Obfuscated-OpenSSH
(-PSK) Auth Fail ❌ (✅) ❌ None 16

kcptun Never ✅ ❌ None 52

Our construction Never ✅ ✅ Traffic Shaping 1

▪ Generally close behavior is identifying, even when they tried to avoid that
▪ Minimum message size may not appear in practice, although protocols with keepalives

do generate them
▪ Our experiments uncovered an integrity attack in VMess (now fixed)

28

Experimental Analysis of Datagram FEPs

Datagram Protocol FEP-CPA FEP-CCA Length Obfuscation Minimum Message
Size

Shadowsocks-libev ✅ ✅ None 55

WireGuard-SWGP ✅ ✅ Padding 75

OpenVPN-XOR ❌ ❌ None 40

Our construction ✅ ✅ Traffic Shaping 0

▪ FEP security easier to achieve without closures
▪ We observe larger minimum message size due to

more required metadata in the datagram setting.

29

Future Work

▪ FEP research ideas
▪ Forward secrecy
▪ Forward metadata secrecy
▪ High-performance FEPs
▪ Other TCP metadata leaks (e.g. congestion window)
▪ Versioning / protocol negotiation

▪ Paper available:
▪ Ellis Fenske and Aaron Johnson. “Bytes to Schlep? Use a

FEP: Hiding Protocol Metadata with Fully Encrypted
Protocols”. May 2024.
▪ <https://arxiv.org/abs/2405.13310>

https://arxiv.org/abs/2405.13310

