
WhatsUpp with Sender Keys?
Analysis, Improvements and Security Proofs

David Balbás1,2, Daniel Collins3, Phillip Gajland4,5

27th May 2024

1IMDEA Software Institute, Madrid, Spain
2Universidad Politécnica de Madrid, Spain
3EPFL, Lausanne, Switzerland
4Max Planck Institute for Security and Privacy, Bochum, Germany
5Ruhr University Bochum, Germany

1



Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.

2



Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.

2



Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.

2



Group Messaging

• Messaging protocols are used by

billions daily. Many apps claim

security + end-to-end encryption.

• Formal protocol analysis is crucial.

• MLS: Lots of theoretical analysis.

Secure, efficient, complex.

• Sender Keys: WhatsApp, Signal.

No formal analysis so far.

2



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

3



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

3



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

3



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

3



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

3



Sender Keys

• Sender Keys is a simple, efficient

group messaging protocol used in

WhatsApp, Signal, Matrix...

• Parties use their own symmetric key

kID to encrypt. No group key.

• Parties use two-party messaging to

share fresh key material.

A

B

C

kA, sskA
kB , spkB
kC , spkC

C ← Enc(kA,m)

σ ← Sgn(sskA,C )

C , σ

C , σ

C , σ

3



What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.

4



What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.

4



What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.

4



What is Secure Messaging?

• Correct, authentic, confidential, and asynchronous messaging.

• Secure membership.

• Forward Security (FS): past messages secret after compromise.

• Post-Compromise Security (PCS): future messages secret a key refresh.

4



So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the

aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?

5



So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the

aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?

5



So, WhatsUpp with Sender Keys?

Can we formalise Sender Keys in a meaningful security model, considering the

aforementioned requirements?

What are its main deficiencies, and how can we address them efficiently?

5



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

6



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

6



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

6



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

6



Our Work

• Formalization of Sender Keys in a novel framework.

• Security model capturing interaction between group messages and two-party

channels.

• Proof of security with some restrictions. Identified shortcomings.

• Improvements in Sender Keys+: better efficiency and security.

Concurrent work [Albrecht, Dowling, Jones, S&P 2024] formalizes Matrix, similar conclusions.

6



Protocol and Syntax



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)

7



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)

7



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)

7



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}

• b $← Proc(T , γ)

7



Syntax

A Group Messenger (GM) includes:

• C $← Send(m, γ)

• (m, ID∗, e, i) $← Recv(C , γ)

• T $← Exec(cmd, IDs, γ), cmd ∈ {crt, add, rem, upd}
• b $← Proc(T , γ)

7



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ckA, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

ckA

8



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)

H2()

H1()

ckA ck′A

mki

8



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)

c ← Enc(mki ,m)

σ ← Sgn(sskA, (c , i ,A))

H2()

H1()

ckA ck′A

mki

(c , i ,A),σ

8



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ckA, spkA
ckB , spkB
ckC , sskC

ckA, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)

c ← Enc(mki ,m)

σ ← Sgn(sskA, (c , i ,A))

H2()

H1()

ckA ck′A

mki

(c , i ,A),σ (c , i ,A),σ

(c , i ,A),σ

8



Sender Keys: Send & Recv

A B

C

ckB , spkB
ckC , spkC
ck′A, sskA

ck′A, spkA
ckB , spkB
ckC , sskC

ck′A, spkA
ckC , spkC
ckB , sskB

mki ← H1(ckA)

ck′A ← H2(ckA)

c ← Enc(mki ,m)

σ ← Sgn(sskA, (c , i ,A))

H2()

H1()

ckA ck′A

mki

(c , i ,A),σ (c , i ,A),σ

(c , i ,A),σ mki ← H1(ckA)

ck′A ← H2(ckA)

Ver(spkA, (c , i ,A))
?
= 1

m ← Dec(mki , c)

8



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC.

9



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC.

9



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC.

9



Two-Party Channels

• If C leaves (or someone updates):

• A,B process removal & erase keys.

• Fresh keys sent over secure 2PC.

• In reality, New keys sent encrypted...

under Double Ratchet keys! [MP16]

• A compromise also affects 2PC keys.

Modelling 2PC

We model two-party channels as a primitive 2PC.

9



Two-Party Channels

Two-party channels only refresh (i.e. achieve PCS) if users interact.

1

2

3

4

5

6

However, some two-party chats are often stale...

10



Proving Security



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

• Clean execution: no trivial attacks.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• Add/Remove(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

11



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

• Clean execution: no trivial attacks.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• Add/Remove(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

11



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

• Clean execution: no trivial attacks.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• Add/Remove(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

11



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

• Clean execution: no trivial attacks.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• Add/Remove(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

11



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

• Clean execution: no trivial attacks.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• Add/Remove(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

11



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

• Clean execution: no trivial attacks.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• Add/Remove(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

11



Security Model

We introduce a message indistinguishability security

game M-INDC.

• Adaptive A can forge and inject messages.

• Users can be exposed at any time (capturing

FS, PCS).

• A wins if:

• breaks semantic security, or

• forges a message

• in a clean/safe execution under C.

• Clean execution: no trivial attacks.

Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID,C )

• Add/Remove(ID, ID ′)

• Update(ID)

• Deliver(ID,T )

• Expose(ID)

11



Main theorem

Security of Sender Keys (informal)

Assume

• SymEnc is a IND-CPA symmetric encryption scheme.

• Sig is a SUF-CMA signature scheme.

• H is a PRG.

• 2PC is a 2PC-IND∆ two-party channels scheme for PCS bound ∆ > 0.

Then Sender Keys is M-INDC(∆) secure in our model w.r.t. a weak predicate C.

Conclusion: The core of the protocol has no fundamental flaws. But it still presents

some drawbacks.

12



Main theorem

Security of Sender Keys (informal)

Assume

• SymEnc is a IND-CPA symmetric encryption scheme.

• Sig is a SUF-CMA signature scheme.

• H is a PRG.

• 2PC is a 2PC-IND∆ two-party channels scheme for PCS bound ∆ > 0.

Then Sender Keys is M-INDC(∆) secure in our model w.r.t. a weak predicate C.

Conclusion: The core of the protocol has no fundamental flaws. But it still presents

some drawbacks.

12



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

• No authentication for control messages.

• Weak forward security for authentication.

13



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

• No authentication for control messages.

• Weak forward security for authentication.

13



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

• No authentication for control messages.

• Weak forward security for authentication.

13



Limitations

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

• No authentication for control messages.

• Weak forward security for authentication.

13



Sender Keys+

• Slow healing due to two-party channels, inefficient updates.

• Total ordering of control messages required.

• No authentication for control messages.

• Weak forward security for authentication.

We propose and formalize Sender Keys+ as a practical, improved alternative!

14



Sub-Optimal Forward Security

Let G = {ID1, ID2}. Then A queries:

• q1 = Send(ID1,m) generates C encrypted under mk and signed under ssk1.

• q2 = Expose(ID1), where A obtains ssk1, but not mk.

• A replaces the symmetric ciphertext in C and signs under ssk1 to create C ′.

• q3 = Receive(ID2, ID1,C
′), which is a successful injection.

q3 attempts to inject a message with keys from before exposure =⇒ should be allowed.

Can occur naturally e.g. if ID2 is offline when m is first sent.

Can be prevented with a MAC.

15



Sub-Optimal Forward Security

Let G = {ID1, ID2}. Then A queries:

• q1 = Send(ID1,m) generates C encrypted under mk and signed under ssk1.

• q2 = Expose(ID1), where A obtains ssk1, but not mk.

• A replaces the symmetric ciphertext in C and signs under ssk1 to create C ′.

• q3 = Receive(ID2, ID1,C
′), which is a successful injection.

q3 attempts to inject a message with keys from before exposure =⇒ should be allowed.

Can occur naturally e.g. if ID2 is offline when m is first sent.

Can be prevented with a MAC.

15



Sub-Optimal Forward Security

Let G = {ID1, ID2}. Then A queries:

• q1 = Send(ID1,m) generates C encrypted under mk and signed under ssk1.

• q2 = Expose(ID1), where A obtains ssk1, but not mk.

• A replaces the symmetric ciphertext in C and signs under ssk1 to create C ′.

• q3 = Receive(ID2, ID1,C
′), which is a successful injection.

q3 attempts to inject a message with keys from before exposure =⇒ should be allowed.

Can occur naturally e.g. if ID2 is offline when m is first sent.

Can be prevented with a MAC.

15



Sub-Optimal Forward Security

Let G = {ID1, ID2}. Then A queries:

• q1 = Send(ID1,m) generates C encrypted under mk and signed under ssk1.

• q2 = Expose(ID1), where A obtains ssk1, but not mk.

• A replaces the symmetric ciphertext in C and signs under ssk1 to create C ′.

• q3 = Receive(ID2, ID1,C
′), which is a successful injection.

q3 attempts to inject a message with keys from before exposure =⇒ should be allowed.

Can occur naturally e.g. if ID2 is offline when m is first sent.

Can be prevented with a MAC.

15



Sub-Optimal Forward Security

Let G = {ID1, ID2}. Then A queries:

• q1 = Send(ID1,m) generates C encrypted under mk and signed under ssk1.

• q2 = Expose(ID1), where A obtains ssk1, but not mk.

• A replaces the symmetric ciphertext in C and signs under ssk1 to create C ′.

• q3 = Receive(ID2, ID1,C
′), which is a successful injection.

q3 attempts to inject a message with keys from before exposure =⇒ should be allowed.

Can occur naturally e.g. if ID2 is offline when m is first sent.

Can be prevented with a MAC.

15



Sub-Optimal Forward Security

Let G = {ID1, ID2}. Then A queries:

• q1 = Send(ID1,m) generates C encrypted under mk and signed under ssk1.

• q2 = Expose(ID1), where A obtains ssk1, but not mk.

• A replaces the symmetric ciphertext in C and signs under ssk1 to create C ′.

• q3 = Receive(ID2, ID1,C
′), which is a successful injection.

q3 attempts to inject a message with keys from before exposure =⇒ should be allowed.

Can occur naturally e.g. if ID2 is offline when m is first sent.

Can be prevented with a MAC.

15



Sub-Optimal Forward Security

Let G = {ID1, ID2}. Then A queries:

• q1 = Send(ID1,m) generates C encrypted under mk and signed under ssk1.

• q2 = Expose(ID1), where A obtains ssk1, but not mk.

• A replaces the symmetric ciphertext in C and signs under ssk1 to create C ′.

• q3 = Receive(ID2, ID1,C
′), which is a successful injection.

q3 attempts to inject a message with keys from before exposure =⇒ should be allowed.

Can occur naturally e.g. if ID2 is offline when m is first sent.

Can be prevented with a MAC.

15



Unsigned Control Messages

• In WhatsApp, control messages are not signed, so a network adversary can forge

them without exposing any party!

• Server can add/remove parties on behalf of other users:

• Burgle into the group attack [RMS18].

• Signal provides more protection but less than if signatures were used.

• Solution: sign control messages!

16



Unsigned Control Messages

• In WhatsApp, control messages are not signed, so a network adversary can forge

them without exposing any party!

• Server can add/remove parties on behalf of other users:

• Burgle into the group attack [RMS18].

• Signal provides more protection but less than if signatures were used.

• Solution: sign control messages!

16



Unsigned Control Messages

• In WhatsApp, control messages are not signed, so a network adversary can forge

them without exposing any party!

• Server can add/remove parties on behalf of other users:

• Burgle into the group attack [RMS18].

• Signal provides more protection but less than if signatures were used.

• Solution: sign control messages!

16



Unsigned Control Messages

• In WhatsApp, control messages are not signed, so a network adversary can forge

them without exposing any party!

• Server can add/remove parties on behalf of other users:

• Burgle into the group attack [RMS18].

• Signal provides more protection but less than if signatures were used.

• Solution: sign control messages!

16



Sender Keys in Practice

• Contrary to some folklore, Signal uses Sender Keys whenever possible!

• WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.

• Signal protects privacy more than WhatsApp (sealed sender, private groups...).

• Matrix uses Sender Keys but does not ratchet symmetric keys.

17



Sender Keys in Practice

• Contrary to some folklore, Signal uses Sender Keys whenever possible!

• WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.

• Signal protects privacy more than WhatsApp (sealed sender, private groups...).

• Matrix uses Sender Keys but does not ratchet symmetric keys.

17



Sender Keys in Practice

• Contrary to some folklore, Signal uses Sender Keys whenever possible!

• WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.

• Signal protects privacy more than WhatsApp (sealed sender, private groups...).

• Matrix uses Sender Keys but does not ratchet symmetric keys.

17



Sender Keys in Practice

• Contrary to some folklore, Signal uses Sender Keys whenever possible!

• WhatsApp (resp. Signal) supports 1024 (resp. 256) member groups.

• Signal protects privacy more than WhatsApp (sealed sender, private groups...).

• Matrix uses Sender Keys but does not ratchet symmetric keys.

17



Final Remarks



Takeaways

• Sender Keys is used by WhatsApp and

Signal.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

Thank you!

ia.cr/2023/1385

danielpatcollins@gmail.com

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
danielpatcollins@gmail.com
phillip.gajland@mpi-sp.org


Takeaways

• Sender Keys is used by WhatsApp and

Signal.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

Thank you!

ia.cr/2023/1385

danielpatcollins@gmail.com

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
danielpatcollins@gmail.com
phillip.gajland@mpi-sp.org


Takeaways

• Sender Keys is used by WhatsApp and

Signal.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

Thank you!

ia.cr/2023/1385

danielpatcollins@gmail.com

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
danielpatcollins@gmail.com
phillip.gajland@mpi-sp.org


Takeaways

• Sender Keys is used by WhatsApp and

Signal.

• Sender Keys is provably secure but in a

weak model.

• Sender Keys+: improved security and

efficiency.

Thank you!

ia.cr/2023/1385

danielpatcollins@gmail.com

phillip.gajland@mpi-sp.org

18

ia.cr/2023/1385
danielpatcollins@gmail.com
phillip.gajland@mpi-sp.org

	Protocol and Syntax
	Proving Security
	Final Remarks

